Skip to main content
Log in

A flexible optimization method for scaling surface-electrode ion traps

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Recent advances in scaling surface-electrode ion trap have demonstrated optimization of critical components, such as junctions and loading slots. In this study, a flexible method to systematically optimize the shape of radio frequency (rf) rails in different components was proposed. The rf rails were discretized in the electrostatic calculation; thus, the spatial fields of different components can be accumulated according to the superposition principle. The optimization process was accomplished by placing artificial control points along the edges of the rf rails, providing controllable degree of freedom. The locations of these control points were modified using ant colony optimization, which employs a proposed hybrid multi-objective function. The proposed method was verified with three kinds of components: an X junction, a Y junction, and a loading slot. Compared with the results obtained using non-optimized cases and the existing methods, the proposed method produced favorable results in maintaining the ion height and minimizing the axial pseudopotential barrier and rf noise heating. The proposed method can also be used to optimize other scaling components of surface-electrode ion traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  2. D.J. Wineland, D. Leibfried, Quantum information processing and metrology with trapped ions. Laser Phys. Lett. 8, 175 (2011)

    Article  ADS  Google Scholar 

  3. M. Carsjens, M. Kohnen, T. Dubielzig, C. Ospelkaus, Surface-electrode Paul trap with optimized near-field microwave control. Appl. Phys. B 114, 243 (2014)

    Article  ADS  Google Scholar 

  4. C. Monroe, J. Kim, Scaling the ion trap quantum processor. Science 339, 1164 (2013)

    Article  ADS  Google Scholar 

  5. M.J. Madsen, W.K. Hensinger, D. Stick, J.A. Rabchuk, C. Monroe, Planar ion trap geometry for microfabrication. Appl. Phys. B 78, 639 (2004)

    Article  ADS  Google Scholar 

  6. J. Chiaverini, R.B. Blakestad, J. Britton, J.D. Jost, C. Langer, D. Leibfried, R. Ozeri, D.J. Wineland, Surface-electrode architecture for ion-trap quantum information processing. Quantum Inform. Comput. 5, 419–39 (2005)

    MATH  MathSciNet  Google Scholar 

  7. D. Kielpinski, C. Monroe, D.J. Wineland, Architecture for a large-scale ion-trap quantum computer. Nature 417, 709 (2002)

    Article  ADS  Google Scholar 

  8. J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender, D.J. Wineland, Toward scalable ion traps for quantum information processing. New J. Phys. 12, 033031 (2010)

    Article  ADS  Google Scholar 

  9. D.L. Moehring, C. Highstrete, D. Stick, K.M. Fortier, R. Haltli, C. Tigges, M.G. Blain, Design, fabrication and experimental demonstration of junction surface ion traps. New J. Phys. 13, 075018 (2011)

    Article  ADS  Google Scholar 

  10. K. Wright, J.M. Amini, D.L. Faircloth, C. Volin, S.C. Doret, H. Hayden, C.S. Pai, D.W. Landgren, D. Denison, T. Killian, R.E. Slusher, A.W. Harter, Reliable transport through a microfabricated X-junction surface-electrode ion trap. New J. Phys. 15, 033004 (2013)

    Article  ADS  Google Scholar 

  11. S.C. Doret, J.M. Amini, K. Wright, C. Volin, T. Killian, A. Ozakin, D. Denison, H. Hayden, C.S. Pai, R.E. Slusher, A.W. Harter, Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation. New J. Phys. 14, 073012 (2012)

    Article  ADS  Google Scholar 

  12. D.R. Leibrandt, Demonstration of a scalable, multiplexed ion trap for quantum information processing. Quantum Inform. Comput. 9, 901–19 (2009)

    Google Scholar 

  13. R.B. Blakestad, C. Ospelkaus, A.P. VanDevender, J.H. Wesenberg, M.J. Biercuk, D. Leibfried, D.J. Wineland, Near-ground-state transport of trapped-ion qubits through a multidimensional array. Phys. Rev. A 84, 032314 (2011)

    Article  ADS  Google Scholar 

  14. M. Dorigo, L.M. Gambardella, Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)

    Article  Google Scholar 

  15. K. Socha, M. Dorigo, Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. http://www.ansys.com/

  17. http://www.comsol.com/

  18. M.H. Oliveira, J.A. Miranda, Biot-Savart-like law in electrostatics. Eur. J. Phys. 22, 31 (2001)

    Article  MATH  Google Scholar 

  19. M.G. House, Analytic model for electrostatic fields in surface-electrode ion traps. Phys. Rev. A 78, 033402 (2008)

    Article  ADS  Google Scholar 

  20. J.H. Wesenberg, Electrostatics of surface-electrode ion traps. Phys. Rev. A 78, 063410 (2008)

    Article  ADS  Google Scholar 

  21. R. Schmied, Electrostatics of gapped and finite surface electrodes. New J. Phys. 12, 023038 (2010)

    Article  ADS  Google Scholar 

  22. H.G. Dehmelt, Radiofrequency spectroscopy of stored ions I: storage. Adv. At. Mol. Phys. 3, 53 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Kenneth Wright of the University of Maryland for his feedback. This work is supported by the National Natural Science Foundation of China under Grant No 61205108, and the High Performance Computing (HPC) Foundation of National University of Defense Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, S. & Wu, W. A flexible optimization method for scaling surface-electrode ion traps. Appl. Phys. B 117, 1149–1159 (2014). https://doi.org/10.1007/s00340-014-5939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5939-2

Keywords

Navigation