Skip to main content
Log in

Z-scan characterization of optical nonlinearities of an imperfect sample profits from radially polarized beams

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present the Z-scan technique using azimuthal-variant vector beams for characterizing the nonlinear refractive index of an isotropic nonlinear medium. Compared with the conventional Z-scan measurements, the reliability of the vector beam Z-scan is improved because the focused azimuthal-variant vector beam exhibits a uniform-intensity focal ring instead of a focal spot. Experimentally, our investigation demonstrates that the Z-scan using radially polarized beams is a preferable technique for characterizing the optical nonlinearity of an imperfect sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Q.W. Zhan, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009)

    Article  Google Scholar 

  2. X.L. Wang, J. Ding, W.J. Ni, C.S. Guo, H.T. Wang, Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett. 32, 3549–3551 (2007)

    Article  ADS  Google Scholar 

  3. B. Gu, Y. Cui, Nonparaxial and paraxial focusing of azimuthal-variant vector beams. Opt. Express 20, 17684–17694 (2012)

    Article  ADS  Google Scholar 

  4. X.L. Wang, J. Chen, Y.N. Li, J.P. Ding, C.S. Guo, H.T. Wang, Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett. 105, 253602 (2010)

    Article  ADS  Google Scholar 

  5. C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode, Revealing local field structure of focused ultrafast pulses. Phys. Rev. Lett. 106, 123901 (2011)

    Article  ADS  Google Scholar 

  6. A. Ohtsu, Y. Kozawa, S. Sato, Calculation of second-harmonic wave pattern generated by focused cylindrical vector beams. Appl. Phys. B 98, 851–855 (2010)

    Article  ADS  Google Scholar 

  7. B. Hao, J. Leger, Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam. Opt. Express 15, 3550–3556 (2007)

    Article  ADS  Google Scholar 

  8. J.W. Haus, Z. Mozumder, Q.W. Zhan, Azimuthal modulation instability for a cylindrically polarized wave in a nonlinear Kerr medium. Opt. Express 14, 4757–4764 (2006)

    Article  ADS  Google Scholar 

  9. G. Bautista, M.J. Huttunen, J. Mäkitalo, J.M. Kontio, J. Simonen, M. Kauranen, Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams. Nano Lett. 12, 3207–3212 (2012)

    Article  Google Scholar 

  10. S.M. Li, Y. Li, X.L. Wang, L.J. Kong, K. Lou, C. Tu, Y. Tian, H.T. Wang, Taming the collapse of optical fields. Sci. Rep. 2, 1007 (2012)

    ADS  Google Scholar 

  11. B. Gu, F. Ye, K. Lou, Y. Li, J. Chen, H.T. Wang, Vectorial self-diffraction effect in optically Kerr medium. Opt. Express 20, 149–157 (2012)

    Article  ADS  Google Scholar 

  12. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  13. W. Zhao, P. Palffy-Muhoray, Z-scan technique using top-hat beams. Appl. Phys. Lett. 63, 1613–1615 (1993)

    Article  ADS  Google Scholar 

  14. G. Boudebs, S. Cherukulappurath, Nonlinear optical measurements using a 4\(f\) coherent imaging system with phase objects. Phys. Rev. A 69, 053813 (2004)

    Article  ADS  Google Scholar 

  15. W. Zhang, M.G. Kuzyk, Effect of a thin optical Kerr medium on a Laguerre–Gaussian beam. Appl. Phys. Lett. 89, 101103 (2006)

    Article  ADS  Google Scholar 

  16. T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, K. Ait-Ameur, Baryscan: a sensitive and user-friendly alternative to Z scan for weak nonlinearities measurements. Opt. Lett. 36, 1401–1403 (2011)

    Article  ADS  Google Scholar 

  17. P.B. Chapple, J. Straomlynska, J.A. Hermann, T.J. Mckay, R.G. Mcdff, Single-beam Z-scan: measurement techniques and analysis. J. Nonlinear. Opt. Phys. Mater. 6, 251–293 (1997)

    Article  ADS  Google Scholar 

  18. B.M. Patterson, W.R. White, T.A. Robbins, R.J. Knize, Linear optical effects in Z-scan measurements of thin films. Appl. Opt. 37, 1854–1857 (1998)

    Article  ADS  Google Scholar 

  19. Q. Yang, J.T. Seo, S. Creekmore, D. Temple, A. Mott, N. Min, K. Yoo, S.Y. Kim, S. Jung, Distortions in Z-scan spectroscopy. Appl. Phys. Lett. 82, 19–21 (2003)

    Article  ADS  Google Scholar 

  20. P.P. Banerjee, A.Y. Danileiko, T. Hudson, D. McMillen, P-scan analysis of inhomogeneous induced optical nonlinearities. J. Opt. Soc. Am. B 15, 2446–2454 (1998)

    Article  ADS  Google Scholar 

  21. Q.G. Yang, J.T. Seo, S.J. Creekmore, D.A. Temple, K.P. Yoo, S.Y. Kim, S.S. Jung, A. Mott, I-scan measurements of the nonlinear refraction and nonlinear absorption coefficients of some nanomaterials. Proc. SPIE 4797, 101–109 (2003)

    Article  ADS  Google Scholar 

  22. P. Chen, D.A. Oulianov, I.V. Tomov, P.M. Rentzepis, Two-dimensional Z scan for arbitrary beam shape and sample thickness. J. Appl. Phys. 85, 7043–7050 (1999)

    Article  ADS  Google Scholar 

  23. R.P. Chen, B. Gu, Y.M. Xu, J. Wang, H.T. Wang, Theoretical study on stability of Z-scan technique by use of quasi-one-dimensional slit beam. Optik 122, 1152–1158 (2011)

    Article  ADS  Google Scholar 

  24. J. Wang, B. Gu, Y.M. Xu, H.T. Wang, Enhanced sensitivity of Z-scan technique by use of flat-topped beam. Appl. Phys. B 95, 773–778 (2009)

    Article  ADS  Google Scholar 

  25. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Self-guided propagation of ultrafast IR laser pulses in fused silica. Phys. Rev. Lett. 87, 213902 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant Nos. 11174160 and 11474052) and the National Key Basic Research Program of China (Grant No. 2015CB352002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Gu or Yiping Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, B., Liu, D., Wu, JL. et al. Z-scan characterization of optical nonlinearities of an imperfect sample profits from radially polarized beams. Appl. Phys. B 117, 1141–1147 (2014). https://doi.org/10.1007/s00340-014-5937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5937-4

Keywords

Navigation