Skip to main content
Log in

BaCaF2/III–V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Semiconductor devices such as vertical-cavity surface-emitting lasers (VCSELs) or semiconductor-saturable absorber mirrors (SESAMs) require high-reflection mirrors. Moreover, in VCSELs, it is beneficial to have a crystalline mirror, which is as thin as possible in order to ensure a high thermal conductivity for efficient heat-sinking of the laser. On the other hand, the wavelength tuning range of a SESAM is limited by the reflection bandwidth of its distributed Bragg reflector (DBR). Thus, broadband mirrors are preferable here. This paper reports a three-pair DBR grown by molecular beam epitaxy (MBE) using BaCaF2 and GaAs on a GaAs (100) substrate. Due to the high ratio in refractive indices of GaAs and the group-IIa-fluorides, high-reflectivity mirrors and wide bandwidths can be obtained with low total thicknesses. We also investigated growth and stability of the material BaCaF2, as well as its thermal conductivity both as single layer and Bragg reflector. Observed peeling of the layers could be avoided by implementing a fluorine treatment previous to the BaCaF2 growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Schön, M. Haiml, L. Gallmann, M. Achermann, U. Keller, in 2000 Proceedings Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD), pp. 503–510 (2000)

  2. E.H.C. Parker, The Technology and Physics of Molecular Beam Epitaxy (ISBN: 0306418606, Springer, 1985)

  3. M.-C. Amann, M. Müller, in 12th International Conference on Transparent Optical Networks (ICTON), pp. 1–4 (2010)

  4. S. Schön, M. Haiml, U. Keller, Appl. Phys. Lett. 77(6), 782 (2000)

    Article  ADS  Google Scholar 

  5. Z. Shi, H. Zogg, U. Keller, J. Electron. Mater. 27(2), 55–58 (1998)

    Article  ADS  Google Scholar 

  6. Z. Shi, H. Zogg, P. Müller, I.D. Jung, U. Keller, Appl. Phys. Lett 69, 3474–3476 (1996)

    Article  ADS  Google Scholar 

  7. P.W. Sullivan, R.F.C. Farrow, G.R. Jones, J. Cryst. Growth 60(2), 403–413 (1982)

    Article  ADS  Google Scholar 

  8. H. Clemens, U. Stromberger, P.C. Weilguni, G. Bauer, J. Appl. Phys. 66(4), 1680 (1989)

    Article  ADS  Google Scholar 

  9. A.S. Jordan, J. Cryst. Growth 49(4), 631–642 (1980)

    Article  ADS  Google Scholar 

  10. P. Klocek, Handbook of Infrared Optical Materials (ISBN: 0824784685, Marcel Dekker Inc., New York, 1991)

  11. S.S. Ballard, K.A. McCarthy, W.C. Davis, Rev. Sci. Instrum. 21, 905–907 (1950)

    Article  ADS  Google Scholar 

  12. M. Haiml, M. Achermann, U. Keller, J. Vac. Sci. Technol. B 18(3), 1701–1705 (2000)

    Article  Google Scholar 

  13. Y. Yamada, M. Oshima, S. Maeyama, T. Kawamura, T. Miyahara, Appl. Surf. Sci. 33–34, 1073–1080 (1988)

    Article  Google Scholar 

  14. T. Waho, F. Yanagawa, Y. Yamada, J. Cryst. Growth 95(1–4), 415–420 (1989)

    Article  ADS  Google Scholar 

  15. A. Baldan, J. Mater. Sci. 37, 2171–2202 (2002)

    Article  ADS  Google Scholar 

  16. P.W. Voorhees, J. Stat. Phys. 38(1–2), 231–252 (1985)

    Article  ADS  Google Scholar 

  17. D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press Inc., Boca Raton, FL, 2003)

    Google Scholar 

  18. H. Wada, T. Kamijoh, Jpn. J. Appl. Phys. 35, L648–L650 (1996)

    Article  ADS  Google Scholar 

  19. L.A. Coldren, S.W. Corzine, Diode lasers and photonic integrated circuits (Wiley, New York, 1995)

    Google Scholar 

  20. S.M. Sze, Semiconductor Devices: Physics and Technology, 2nd edn. (ISBN: 0471333727, Wiley, New York, 2001)

  21. B. Schumann, H. Neumann, Cryst. Res. Technol. 19(1), K13–K14 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to thank Prof. G. Franz (Munich University of Applied Sciences, Department 06) for helpful discussions concerning dry chemical etching.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Koeninger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koeninger, A., Boehm, G., Meyer, R. et al. BaCaF2/III–V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices. Appl. Phys. B 117, 1091–1097 (2014). https://doi.org/10.1007/s00340-014-5930-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5930-y

Keywords

Navigation