Skip to main content
Log in

Lens–fibre interference proposed to monitor a transparent sheet’s thickness variations

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The lens–fibre interference (LFI) technique is used for monitoring thickness variations of a known refractive index transparent sheet. The sheet is inserted in the light path between the cylindrical lens and the fibre, in the LFI optical arrangement. A phase change and a geometrical shift for the beam passed through the sheet are observed. The presence of the sheet is considered in the ray tracing model which explained LFI (J. Opt. A: Pure Appl. Opt. 2:234–238, 2000). So, we are able to reproduce the interference pattern, in the presence of the sheet, theoretically. Depending on the width of the incident light spot on the cylindrical lens, a three beams interference could be observed. A development of the previous model is presented taking into account the third interfered beam. The produced interference pattern is a good indicator to the sheet’s thickness variations, especially when we considered the occurred three beams interference. Some investigations about the uncertainty analyses in our measurements are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Savolainen, K.E. Peiponen, P. Savander, R. Silvennoinen, H. Vehvilainen, Novel optical techniques for windows glass inspection. Meas. Sci. Technol. 6, 1016–1021 (1995)

    Article  ADS  Google Scholar 

  2. M.A. Novikov, A.D. Tertyshnik, V.V. Ivanov, A.V. Goryunov, P.V. Volkov, A.P. Morozov, V.N. Chuplygin, A.I. Granek, S. Yu Knyazev, Y.A. Mishulin, V.P. Peskov, Optical interference system for controlling float-glass ribbon thickness at hot stages of production. Glass Ceram. 61, 37–41(2004)

  3. P.V. Volkov, A.V. Goryunov, A.Y. Luk’yanov, A.D. Tertyshink, Automated multichannel system for in-line monitoring of float-glass ribbon thickness in the hot zone of an annealing furnace. Glass Ceram. 65, 144–147 (2008)

    Article  Google Scholar 

  4. S. Ri, T. Muramatsu, A simple technique for measuring thickness distribution of transparent plates from a single image by using the sampling moiré method. Meas. Sci. Technol. 21, 025305 (2010)

    Article  ADS  Google Scholar 

  5. H.S. Jung, M.S. Hong, S.H. Lee, J.H. Park, D. Kang, M.G. Lee, A novel stylus profiler without nonlinearity and parasitic motion for FPD inspection system. J. Mech. Sci. Technol. 21, 1491–1497 (2007)

    Article  Google Scholar 

  6. J.M. Alves, M.C. Brito, J.M. Serra, A.M. Vallera, A differential mechanical profilometer for thickness measurement. Rev. Sci. Instrum. 75, 5362–5363 (2004)

    Article  ADS  Google Scholar 

  7. H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, M. Haruna, Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness. Appl. Opt. 41, 1315–1322 (2002)

    Article  ADS  Google Scholar 

  8. G. Coppola, P. Ferraro, M. Iodice, S.D. Nicola, Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer. Appl. Opt. 42, 3882–3887 (2003)

    Article  ADS  Google Scholar 

  9. M. Thakur, C.J. Tay, C. Quan, Surface profiling of a transparent object by the use of phase-shifting Talbot interferometry. Appl. Opt. 44, 2541–2545 (2005)

    Article  ADS  Google Scholar 

  10. J. Räsänen, K.E. Peiponen, On-line measurement of the thickness and optical quality of float glass with a sensor based on a diffractive element. Appl. Opt. 40, 5034–5039 (2001)

    Article  ADS  Google Scholar 

  11. Y.K. Ryu, C. Oh, J.S. Lim, Development of a noncontact optical sensor for measuring the shape of a surface and thickness of transparent objects. Opt. Eng. 40, 500–502 (2001)

    Article  ADS  Google Scholar 

  12. C.H. Liu, Z.H. Li, Application of the astigmatic method to the thickness measurement of glass substrates. Appl. Opt. 47, 3968–3972 (2008)

    Article  ADS  Google Scholar 

  13. W.A. Ramadan, On-line lens–fibre interference method for testing a thick fibre. J. Opt. A: Pure Appl. Opt. 2, 234–238 (2000)

    Article  ADS  Google Scholar 

  14. A.A. Hamza, M.A. Mabrouk, W.A. Ramadan, H.H. Wahba, Core-index determination of a thick fibre using lens–fibre interference (LFI) technique. Opt. Lasers Eng. 42, 121–130 (2004)

    Article  Google Scholar 

  15. W.A. Ramadan, H.H. Wahba, Lens–fibre interference in measuring liquids refractive indices. Meas. Sci. Technol. 17, 215–220 (2006)

    Article  ADS  Google Scholar 

  16. H. El-Ghandoor, I. Nasser, M.A. Abd-El, Rahman, R. Hassan, Theoretical model for the transverse interference pattern of GRIN optical fiber using a laser sheet of light. Opt. Laser Technol. 32, 281–286 (2000)

    Article  ADS  Google Scholar 

  17. H. El-Ghandoor, E. Hegazi, I. Nasser, G.M. Behery, Measuring the refractive index of crude oil using a capillary tube interferometer. Opt. Laser Technol. 35, 361–367 (2003)

    Article  ADS  Google Scholar 

  18. A. Yang, W. Li, G. Yuan, J. Dong, J. Zhang, Measuring the refractive indices of liquids with a capillary tube interferometer. Appl. Opt. 45, 7993–7998 (2006)

    Article  ADS  Google Scholar 

  19. A.A. Yang, M. Tang, Interferograms and testing of step index plastic fiber with a lens–fiber method. IJMSE 3, 111–114 (2013)

    MathSciNet  Google Scholar 

  20. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. El-Tawargy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, W.A., Shams El-Din, M.A., Wahba, H.H. et al. Lens–fibre interference proposed to monitor a transparent sheet’s thickness variations. Appl. Phys. B 117, 1073–1080 (2014). https://doi.org/10.1007/s00340-014-5928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5928-5

Keywords

Navigation