Advertisement

Applied Physics B

, Volume 117, Issue 4, pp 1035–1039 | Cite as

Three-photon excitation of quantum dots with a telecom-band ultrafast fiber laser

  • M. J. Petrasiunas
  • J. B. O. Wood
  • D. Kielpinski
  • E. W. Streed
Article
  • 155 Downloads

Abstract

We demonstrate three-photon excitation in quantum dots with a mode-locked fiber laser operating in the telecommunications band. We compare spectra and intensity dependence of fluorescence from one- and three-photon excitation of commercially available 640-nm quantum dots, using a 372-nm diode laser for one-photon excitation and 116-fs pulses from a mode-locked fiber laser with a center wavelength of 1,575 nm for three-photon excitation.

Keywords

Fiber Laser Excitation Intensity Energy Level Structure Bleaching Rate Linear Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

D.K. was supported by an Australian Research Council Future Fellowship (FT110100513). We would like to acknowledge Prof. Jay L. Nadeau of McGill University for sparking our interest in the area.

References

  1. 1.
    C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115(4), 8706 (1993)CrossRefGoogle Scholar
  2. 2.
    J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 126(38), 11752 (2004)CrossRefGoogle Scholar
  3. 3.
    S.A. Empedocles, D.J. Norris, M.G. Bawendi, Phys. Rev. Lett. 77(18), 3873 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Norris, M.G. Bawendi, Phys. Rev. B 53(24), 16338 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281(5385), 2013 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307(5709), 538 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    W.R. Zipfel, R.M. Williams, W.W. Webb, Nat. Biotechnol. 21(11), 1369 (2003)CrossRefGoogle Scholar
  8. 8.
    S.J. Bentley, C.V. Anderson, J.P. Dooher, Opt. Eng. 46(12), 128003 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    A.D. Lad, P. Prem Kiran, G. Ravindra Kumar, S. Mahamuni, Appl. Phys. Lett. 90(13), 133113 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J.W.M. Chon, M. Gu, C. Bullen, P. Mulvaney, Appl. Phys. Lett. 84(22), 4472 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Baranov, Y. Masumoto, K. Inoue, A.V. Fedorov, A.A. Onushchenko, Phys. Rev. B 55(23), 675 (1997)CrossRefGoogle Scholar
  12. 12.
    G.S. He, K.T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A.I. Ryasnyanskiy, P.N. Prasad, Opt. Express 15(20), 12818 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    N.G. Horton, K. Wang, D. Kobat, C.G. Clark, F.W. Wise, C.B. Schaffer, C. Xu, Nat. Photonics 7, 205 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    A.P. Alivisatos, J. Phys. Chem. 3654(95), 13226 (1996)CrossRefGoogle Scholar
  15. 15.
    S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Dharmadhikari, N. Kumbhojkar, J.A. Dharmadhikari, S. Mahamuni, R.C. Aiyer, J. Phys.: Condens. Matter 11, 1363 (1999)ADSGoogle Scholar
  17. 17.
    L. Banyai, S. Koch, Semiconductor Quantum Dots (World Scientific, Singapore, 1993)Google Scholar
  18. 18.
    X. Feng, G. Xiong, X. Zhang, H. Gao, Physica B: Condens. Matter 383(2), 207 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    F.M. Mitschke, L.F. Mollenauer, Opt. Lett. 11(10), 659 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Gordon, Opt. Lett. 11(10), 662 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. J. Petrasiunas
    • 1
  • J. B. O. Wood
    • 1
  • D. Kielpinski
    • 1
  • E. W. Streed
    • 1
  1. 1.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia

Personalised recommendations