Skip to main content

Dual-beam wavelength modulation spectroscopy for sensitive detection of water vapor


A technique was reported for sensitive detection of water vapor based on dual-beam wavelength modulation spectroscopy (WMS). Particular attention was focused on the problem of laser power variation (LPV) and residual amplitude modulation (RAM), which accounted for the absorption profile’s distortion during application of WMS. Impact from LPV and RAM was eliminated by photocurrent normalization through a balanced ratiometric detector, which was a dual-beam technique with shot noise-level performance. When consideration of distortion was required, this could enormously simplify the spectra analysis procedure. In the experiment symmetry of the WMS, profile had gotten an improvement by a factor of about 102 compared with traditional single-beam method. During the application test of water vapor detection, the detected amplitude of WMS was well proportional to water vapor concentration ranging from 25 to 1,048 ppmv and the sensitivity was achieved to be 52 ppbv for just a 10-cm optical path length.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. W. Zhang, D.J. Webb, G.-D. Peng, Investigation into time response of polymer fiber bragg grating based humidity sensors. J. Lightwave Technol. 30(8), 1090–1096 (2012)

    ADS  Article  Google Scholar 

  2. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, V. Ebert, Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm. Appl. Phys. B 92(3), 393–401 (2008)

    ADS  Article  Google Scholar 

  3. J. Goldmeer, D.J. Kane, in Real-time 2-D imaging of water vapor in diffusion flames, ed. by T. Li. Laser Applications to Chemical and Environmental Analysis, vol 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, USA, 2000), paper SuA3

  4. D. Richter, D.G. Lancaster, F.K. Tittel, Development of an automated diode laser based multi-component gas sensor. Appl. Opt. 39(24), 4444–4450 (2000)

    ADS  Article  Google Scholar 

  5. M. Gabrysh, C. Corsi, F.S. Pavone, M. Inguscio, Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 μm. Appl. Phys. B 65(1), 75–79 (1997)

    ADS  Article  Google Scholar 

  6. S. Schilt, L. Thevenaz, P. Robert, Wavelength modulation spectroscopy: combined frequency and intensity laser modulation. Appl. Opt. 42(33), 6728–6738 (2003)

    ADS  Article  Google Scholar 

  7. P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38(27), 5803–5815 (1999)

    ADS  Article  Google Scholar 

  8. Edoardo De Tommasi, Giovanni Casa, Livio Gianfrani, An intensity-stabilized diode-laser spectrometer for sensitive detection of NH3. IEEE T. Instrum. Meas. 56(2), 309–313 (2007)

    Article  Google Scholar 

  9. A.L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, K. Duffin, Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line. Opt. Express 17(12), 9602–9607 (2009)

  10. Q. Wang, J. Chang, D.L. Kong, Y.N. Liu, F.P. Wang, C.G. Zhu, W. Wei, X.Z. Liu, Optical measurement of water vapor concentration and gas pressure. IEEE Sens. J. 14(2), 563–569 (2014)

    Article  Google Scholar 

  11. K. Duffin, A.J. McGettrick, W. Johnstone, G. Stewart, D.G. Moodie, Tunable diode laser spectroscopy with wavelength modulation: a calibration-free approach to the recovery of absolute gas absorption line shapes. J. Lightwave Technol. 25(10), 3114–3125 (2007)

    ADS  Article  Google Scholar 

  12. H. Li, G.B. Rieker, X. Liu, B. Jeffries, R.K. Hanson, Extension of wavelength-modulations spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45(5), 1052–1061 (2006)

    ADS  Article  Google Scholar 

  13. P.C.D. Hobbs, in Shot noise optical measurement at baseband with noisy lasers, ed. by R. Roy. Laser Noise, Proceedings on SPIE, vol 1376 (1990), pp. 216–221

  14. M.G. Allen, K.L. Carleton, S.J. Davis, W.J. Kessler, C.E. Otis, D.A. Palombo, D.M. Sonnenfroh, Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors. Appl. Opt. 34(18), 3240–3249 (1995)

    ADS  Article  Google Scholar 

  15. B.L. Upschulte, M.G. Allen, Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 μm. J. Quant. Spectrosc. Radiat. Transfer 59(6), 653–670 (1998)

    ADS  Article  Google Scholar 

  16. D.M. Sonnenfroh, M.G. Allen, Ultrasensitive, visible tunable diode laser detection of NO2. Appl. Opt. 35(21), 4053–4058 (1996)

    ADS  Article  Google Scholar 

  17. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, Vl.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)

  18. S. Suparno, K. Deurloo, P. Stamatelopolous, R. Srivastva, J.C. Thomas, Light scattering with single-mode fiber collimators. Appl. Opt. 33(30), 7200–7205 (1994)

    ADS  Article  Google Scholar 

  19. Shifu Yuan, Nabeel A. Riza, General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses. Appl. Opt. 38(15), 3214–3222 (1999)

    ADS  Article  Google Scholar 

  20. P. Horowitz, W. Hill, The Art of Electronics (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  21. K.L. Haller, P.C.D. Hobbs, Double beam laser absorption spectroscopy: shot-noise-limited performance at baseband with a novel electronic noise canceller. Proc. SPIE 1435, 298–309 (1991)

    ADS  Article  Google Scholar 

  22. D.M. Sonnenfroh, W.J. Kessler, J.C. Magill, B.L. Upschulte, M.G. Allen, J.D.W. Barrick, In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer. Appl. Phys. B 67, 275–282 (1998)

    ADS  Article  Google Scholar 

  23. D.C. Hovde, J.T. Hodges, G.E. Scace, J.A. Silver, Wavelength-modulation laser hygrometer for ultrasensitive detection of water vapor in semiconductor gases. Appl. Opt. 40, 829–839 (2001)

Download references


This work was supported by Natural Science Foundation of China (60977058 & 61475085), The Fundamental Research Funds of Shandong University (2014YQ011).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jun Chang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Chang, J., Wei, W. et al. Dual-beam wavelength modulation spectroscopy for sensitive detection of water vapor. Appl. Phys. B 117, 1015–1023 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Harmonic Signal
  • Water Vapor Concentration
  • Distortion Correction
  • Sensitivity Performance
  • Wavelength Modulation Spectroscopy