Skip to main content

Advertisement

Log in

Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In order to investigate the generation of greenhouse gases in sugarcane ethanol production chain, a comparative study of N2O emission in artificially fertilized soils and soils free from fertilizers was carried out. Photoacoustic spectroscopy using quantum cascade laser with an emission ranging from 7.71 to 7.88 µm and differential photoacoustic cell were applied to detect nitrous oxide (N2O), an important greenhouse gas emitted from soils cultivated with sugar cane. Owing to calibrate the experimental setup, an initial N2O concentration was diluted with pure nitrogen and detection limit of 50 ppbv was achieved. The proposed methodology was selective and sensitive enough to detect N2O from no fertilized and artificially fertilized soils. The measured N2O concentration ranged from ppmv to ppbv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. IPCC, IPCC 1, 976 (2007)

    Google Scholar 

  2. K.E. Trenberth, J.T. Fasullo, J. Kiehl, Bull. Am. Meteorol. Soc. 90, 311 (2009)

    Article  ADS  Google Scholar 

  3. H.J. Hellebrand, V. Scholz, J. Kern, Atmos. Environ. 42, 8403 (2008)

    Article  ADS  Google Scholar 

  4. L. Barton, R. Kiese, D. Gatter, K. Butterbach-bahl, R. Buck, C. Hinz, D.V. Murphy, Glob. Change Biol. 14, 177 (2008)

    Google Scholar 

  5. D.S. Reay, E.A. Davidson, K.A. Smith, P. Smith, J.M. Melillo, F. Dentener, P.J. Crutzen, Nat. Clim. Chang. 2, 410 (2012)

    Article  ADS  Google Scholar 

  6. J.N. Galloway, A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney, L.A. Martinelli, S.P. Seitzinger, M.A. Sutton, Science 320, 889 (2008)

    Article  ADS  Google Scholar 

  7. J.N. Galloway, F.J. Dentener, D.G. Capone, E.W. Boyer, R.W. Howarth, S.P. Seitzinger, G.P. Asner, C.C. Cleveland, P.A. Green, E.A. Holland, D.M. Karl, A.F. Michaels, J.H. Porter, A.R. Townsend, C.J. Vörösmarty, Biogeochemistry 70, 153 (2004)

    Article  Google Scholar 

  8. R.W. Howarth and S. Bringezu, Proc. Sci. Comm. Probl. Environ. SCOPE Int. Biofuels Proj. Rapid Assess. 2225 Sept 2008 Gummersbach Ger., 2009

  9. J. Goldemberg, Energy Policy 34, 2185 (2006)

    Article  Google Scholar 

  10. J. Goldemberg, Quim. Nova 32, 582 (2009)

    Article  Google Scholar 

  11. I.C. Macedo, J.E.A. Seabra, J.E.A.R. Silva, Biomass Bioenergy 32, 582 (2008)

    Article  Google Scholar 

  12. P.J. Crutzen, A.R. Mosier, K.A. Smith, W. Winiwarter, Atmos. Chem. Phys. Discuss. 7, 11191 (2007)

    Article  ADS  Google Scholar 

  13. J. Goldemberg, S.T. Coelho, P. Guardabassi, Energy Policy 36, 2086 (2008)

    Article  Google Scholar 

  14. J. Goldemberg, Biotechnol. Biofuels 1, 6 (2008)

    Article  Google Scholar 

  15. M.E. Webber, R. Claps, F.V. Englich, F.K. Tittel, J.B. Jeffries, R.K. Hanson, Appl. Opt. 40, 4395 (2001)

    Article  ADS  Google Scholar 

  16. F. K. Tittel and R. Lewicki, Tunable mid-infrared laser absorption spectroscopy, in Semicond. Lasers, eds by A. Baranov, E. Tournie (Woodhead 2013), pp. 579–630

  17. M.W. Sigrist, Infrared Phys. Technol. 36, 415 (1995)

    Article  ADS  Google Scholar 

  18. M.B. Filho, M.G. da Silva, M.S. Sthel, D.U. Schramm, H. Vargas, A. Miklós, P. Hess, Appl. Opt. 45, 4966 (2006)

    Article  ADS  Google Scholar 

  19. M.S. Sthel, D.U. Schramm, G.R. Lima, L. Carneiro, R.T. Faria, M.P.P. Castro, J. Alexandre, R. Toledo, M.G. Silva, H. Vargas, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78, 458 (2011)

    Article  ADS  Google Scholar 

  20. B.A. Paldus, T.G. Spence, R.N. Zare, J. Oomens, F.J. Harren, D.H. Parker, C. Gmachl, F. Cappasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 24, 178 (1999)

    Article  ADS  Google Scholar 

  21. G. Mothé, M. Castro, M. Sthel, G. Lima, L. Brasil, L. Campos, A. Rocha, H. Vargas, Sensors 10, 9726 (2010)

    Article  Google Scholar 

  22. Y. Yao, A.J. Hoffman, C.F. Gmachl, Nat. Photonics 6, 432 (2012)

    Article  ADS  Google Scholar 

  23. M.G. Da Silva, H. Vargas, A. Miklós, P. Hess, Appl. Phys. B Lasers Opt. 78, 677 (2004)

    Article  ADS  Google Scholar 

  24. A.K.Y. Ngai, S.T. Persijn, G. Von Basum, F.J.M. Harren, Appl. Phys. B Lasers Opt. 85, 173 (2006)

    Article  ADS  Google Scholar 

  25. H. Waechter, J. Mohn, B. Tuzson, L. Emmenegger, M.W. Sigrist, Opt. Express 16, 9239 (2008)

    Article  ADS  Google Scholar 

  26. M. Rocha, M. Sthel, G. Lima, M. da Silva, D. Schramm, A. Miklós, H. Vargas, Sensors (Basel) 10, 9359 (2010)

    Article  Google Scholar 

  27. A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 40, 5522 (2001)

    Article  ADS  Google Scholar 

  28. D. Hofstetter, M. Beck, J. Faist, M. Nägele, M.W. Sigrist, Opt. Lett. 26, 887 (2001)

    Article  ADS  Google Scholar 

  29. C.R. Webster, G.J. Flesch, D.C. Scott, J.E. Swanson, R.D. May, W.S. Woodward, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 40, 321 (2001)

    Article  ADS  Google Scholar 

  30. T. Beyer, M. Braun, A. Lambrecht, J. Appl. Phys. 93, 3158 (2003)

    Article  ADS  Google Scholar 

  31. J.P. Lima, H. Vargas, A. Miklós, M. Angelmahr, P. Hess, Appl. Phys. B Lasers Opt. 85, 279 (2006)

    Article  ADS  Google Scholar 

  32. B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, Taylor & Francis Group, London, 2011)

    Book  Google Scholar 

  33. A. Miklós, P. Hess, Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  34. P.A. Matson, C. Billow, S. Hall, J. Zachariassen, J. Geophys. Res. 101, 18533 (1996)

    Article  ADS  Google Scholar 

  35. M.A.K. Khalil, R.A. Rasmussen, M.J. Shearer, Z.-L. Chen, H. Yao, J. Yang, J. Geophys. Res. 103, 25241 (1998)

    Article  ADS  Google Scholar 

  36. G.L. Hutchinson, G.P. Livingston, R.W. Healy, R.G. Striegl, J. Geophys. Res. 105, 8865 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian funding agencies CNPq, FAPERJ and CAPES for the financial support, and the Technicians Luiz Antônio Meirelles, Sérgio Sabadelhe Dutra, José Geraldo Simões and Carmindo Afonso Filho for their great technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Tavares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couto, F.M., Sthel, M.S., Castro, M.P.P. et al. Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production. Appl. Phys. B 117, 897–903 (2014). https://doi.org/10.1007/s00340-014-5906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5906-y

Keywords

Navigation