Precision spectroscopy technique for dipole-allowed transitions in laser-cooled ions

Abstract

In this paper , we present a technique for the precise measurement of electric dipole-allowed transitions in trapped ions. By applying a probe and a cooling laser in quick succession, the full transition can be probed without causing distortion from heating the ion. In addition, two probes can be utilized to measure a dispersion-like signal, which is well suited to stabilizing the laser to the transition. We have fully characterized the parameters for the measurement and find that it is possible to measure the line center to better than 100 kHz with an interrogation time of 30 s. The long-term stability of the spectroscopy signal is determined by employing two independent ion trap systems. The first ion trap is used to stabilize the spectroscopy laser. The second ion trap is then employed to measure the stability by continuously probing the transition at two frequencies. From the Allan variance, we obtained a frequency instability of \(1\cdot 10^{-10}\) for an interrogation time of 1,000 s.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    National Instruments USB-6229.

  2. 2.

    SRS-DG5920 four-channel pulse generator.

  3. 3.

    Mini-Circuits ZASWA-2-50DR DC-5GHz.

References

  1. 1.

    Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. Lett. 81, 3631–3634 (1998)

    Article  ADS  Google Scholar 

  2. 2.

    H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643–646 (2005)

    Article  ADS  Google Scholar 

  3. 3.

    I. Bloch, Nature 453, 1016–1022 (2008)

    Article  ADS  Google Scholar 

  4. 4.

    F.H.J. Hall, S. Willitsch, Phys. Rev. Lett. 109, 233202 (2012)

    Article  ADS  Google Scholar 

  5. 5.

    J.H. Wesenberg, R.J. Epstein, D. Leibfried, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Phys. Rev. A 76, 053416 (2007)

    Article  ADS  Google Scholar 

  6. 6.

    E. Brama, A. Mortensen, M. Keller, W. Lange, Appl. Phys. B 107, 945–954 (2012)

    Article  ADS  Google Scholar 

  7. 7.

    C.F. Roos, M. Chwalla, K. Kim, M. Riebe, R. Blatt, Nature 443, 316–319 (2006)

    Article  ADS  Google Scholar 

  8. 8.

    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808–1812 (2008)

    Article  ADS  Google Scholar 

  9. 9.

    H.S. Margolis, G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, P. Gill, Science 306, 1355–1358 (2004)

    Article  ADS  Google Scholar 

  10. 10.

    J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, H.R. Telle, Opt. Lett. 26, 1589–1591 (2001)

    Article  ADS  Google Scholar 

  11. 11.

    Y. Wan, F. Gebert, J.B. Wübbena, N. Scharnhorst, S. Amairi, I.D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, P.O. Schmidt, Nat. Commun. 5, 3096 (2014)

    ADS  Google Scholar 

  12. 12.

    C. Hempel, B.P. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt, C.F. Roos, Nat. Photonics 7, 630–633 (2013)

    Article  ADS  Google Scholar 

  13. 13.

    G. Clos, M. Enderlein, U. Warring, T. Schaetz, Phys. Rev. Lett. 112, 113003 (2014)

    Article  ADS  Google Scholar 

  14. 14.

    M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th Udem, T. Hänsch, Phys. Rev. Lett. 102, 013006 (2009)

    Article  ADS  Google Scholar 

  15. 15.

    R.E. Drullinger, D.J. Wineland, D.C. Bergquist, Appl. Phys. 22, 365–368 (1980)

    Article  ADS  Google Scholar 

  16. 16.

    W. Nagourney, G. Janik, H. Dehmelt, Proc. Natl. Acad. Sci. 80, 643–646 (1983)

    Article  ADS  Google Scholar 

  17. 17.

    T. Baba, I. Waki, J. Appl. Phys. 92, 4109–4116 (2002)

    Article  ADS  Google Scholar 

  18. 18.

    A.L. Wolf, S.A. van den Berg, C. Gohle, E.J. Salumbides, W. Ubachs, K.S.E. Eikema, Phys. Rev. A 78, 032511 (2008)

    Article  ADS  Google Scholar 

  19. 19.

    D.M. Lucas, A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J.-P. Stacey, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. A 69, 012711 (2004)

    Article  ADS  Google Scholar 

  20. 20.

    K. Sheridan, N. Seymour-Smith, A. Gardner, M. Keller, Eur. Phys. J. D 66, 289 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amy Gardner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gardner, A., Sheridan, K., Groom, W. et al. Precision spectroscopy technique for dipole-allowed transitions in laser-cooled ions. Appl. Phys. B 117, 755–762 (2014). https://doi.org/10.1007/s00340-014-5891-1

Download citation

Keywords

  • Fluorescence Spectrum
  • Spectroscopy Laser
  • Probe Pulse
  • Duty Ratio
  • Probe Frequency