Applied Physics B

, Volume 117, Issue 2, pp 755–762 | Cite as

Precision spectroscopy technique for dipole-allowed transitions in laser-cooled ions

  • Amy GardnerEmail author
  • Kevin Sheridan
  • William Groom
  • Nicolas Seymour-Smith
  • Matthias Keller


In this paper , we present a technique for the precise measurement of electric dipole-allowed transitions in trapped ions. By applying a probe and a cooling laser in quick succession, the full transition can be probed without causing distortion from heating the ion. In addition, two probes can be utilized to measure a dispersion-like signal, which is well suited to stabilizing the laser to the transition. We have fully characterized the parameters for the measurement and find that it is possible to measure the line center to better than 100 kHz with an interrogation time of 30 s. The long-term stability of the spectroscopy signal is determined by employing two independent ion trap systems. The first ion trap is used to stabilize the spectroscopy laser. The second ion trap is then employed to measure the stability by continuously probing the transition at two frequencies. From the Allan variance, we obtained a frequency instability of \(1\cdot 10^{-10}\) for an interrogation time of 1,000 s.


Fluorescence Spectrum Spectroscopy Laser Probe Pulse Duty Ratio Probe Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK.


  1. 1.
    Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. Lett. 81, 3631–3634 (1998)CrossRefADSGoogle Scholar
  2. 2.
    H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643–646 (2005)CrossRefADSGoogle Scholar
  3. 3.
    I. Bloch, Nature 453, 1016–1022 (2008)CrossRefADSGoogle Scholar
  4. 4.
    F.H.J. Hall, S. Willitsch, Phys. Rev. Lett. 109, 233202 (2012)CrossRefADSGoogle Scholar
  5. 5.
    J.H. Wesenberg, R.J. Epstein, D. Leibfried, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Phys. Rev. A 76, 053416 (2007)CrossRefADSGoogle Scholar
  6. 6.
    E. Brama, A. Mortensen, M. Keller, W. Lange, Appl. Phys. B 107, 945–954 (2012)CrossRefADSGoogle Scholar
  7. 7.
    C.F. Roos, M. Chwalla, K. Kim, M. Riebe, R. Blatt, Nature 443, 316–319 (2006)CrossRefADSGoogle Scholar
  8. 8.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808–1812 (2008)CrossRefADSGoogle Scholar
  9. 9.
    H.S. Margolis, G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, P. Gill, Science 306, 1355–1358 (2004)CrossRefADSGoogle Scholar
  10. 10.
    J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, H.R. Telle, Opt. Lett. 26, 1589–1591 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Y. Wan, F. Gebert, J.B. Wübbena, N. Scharnhorst, S. Amairi, I.D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, P.O. Schmidt, Nat. Commun. 5, 3096 (2014)ADSGoogle Scholar
  12. 12.
    C. Hempel, B.P. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt, C.F. Roos, Nat. Photonics 7, 630–633 (2013)CrossRefADSGoogle Scholar
  13. 13.
    G. Clos, M. Enderlein, U. Warring, T. Schaetz, Phys. Rev. Lett. 112, 113003 (2014)CrossRefADSGoogle Scholar
  14. 14.
    M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th Udem, T. Hänsch, Phys. Rev. Lett. 102, 013006 (2009)CrossRefADSGoogle Scholar
  15. 15.
    R.E. Drullinger, D.J. Wineland, D.C. Bergquist, Appl. Phys. 22, 365–368 (1980)CrossRefADSGoogle Scholar
  16. 16.
    W. Nagourney, G. Janik, H. Dehmelt, Proc. Natl. Acad. Sci. 80, 643–646 (1983)CrossRefADSGoogle Scholar
  17. 17.
    T. Baba, I. Waki, J. Appl. Phys. 92, 4109–4116 (2002)CrossRefADSGoogle Scholar
  18. 18.
    A.L. Wolf, S.A. van den Berg, C. Gohle, E.J. Salumbides, W. Ubachs, K.S.E. Eikema, Phys. Rev. A 78, 032511 (2008)CrossRefADSGoogle Scholar
  19. 19.
    D.M. Lucas, A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J.-P. Stacey, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. A 69, 012711 (2004)CrossRefADSGoogle Scholar
  20. 20.
    K. Sheridan, N. Seymour-Smith, A. Gardner, M. Keller, Eur. Phys. J. D 66, 289 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amy Gardner
    • 1
    Email author
  • Kevin Sheridan
    • 1
  • William Groom
    • 1
  • Nicolas Seymour-Smith
    • 1
  • Matthias Keller
    • 1
  1. 1.ITCM Group, Department of Physics and AstronomyUniversity of SussexFalmerUK

Personalised recommendations