Skip to main content
Log in

Continuous-wave 2.52 Terahertz Gabor inline compressive holographic tomography

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Continuous-wave (CW) 2.52 Terahertz (THz) 3D tomographic images were obtained by numerically reconstructing a single Gabor inline digital hologram based on modified compressive sensing reconstruction algorithm. Three metallic copper samples which are separately adhered to three Teflon plate were used as the targets. The actual axial resolution achieved was higher than 6 mm, and the lateral resolution was higher than 0.4 mm. Similarly, a paper clip and a handwritten character sample on a white paper were also imaged. Numerical simulation and experimental results verified the preferable reconstruction characteristics of the proposed modified algorithm. The feasibility of CW THz Gabor inline compressive holographic tomography is confirmed by adding barriers such as Teflon boards and thermal paper to block the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, S. Lim, Opt. Exp. 17, 13040–13049 (2009)

  2. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, D. J. Brady, Appl. Opt. 49, E67–E82 (2010)

  3. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, D. Trade, Opt. Lett. 34, 3475–3477 (2009)

  4. J. Hahn, S. Lim, K. Choi, R. Horisaki, D. J. Brady, Opt. Exp. 19, 7289–7298 (2011)

  5. K. Xue, Q. Li, Y. D. Li, Q. Wang, Opt. Lett. 37, 3228–3230 (2012)

  6. M. S. Heimbeck, M. K. Kim, D. A. Gregory, H. O. Everit, Opt. Express 19, 9192–9200 (2011)

  7. R. J. Mahon, J. A. Murphy, W. Lanigan, Opt. Commun. 260, 469–473 (2006)

  8. Y. Zhang, W. Zhou, X. Wang, Y. Cui, W. Sun, Strain 44, 380–385 (2008)

  9. I. McAuley, J. A. Murphy, N. Trappe, R. Mahon, D. McCarthy, P. McLaughlin, Proc. of SPIE 7938, 79380H (2011)

  10. Q. Li, S.H. Ding, Y.D. Li, Q. Wang, Appl. Phys. B 107, 103–110 (2012)

    Article  ADS  Google Scholar 

  11. Q. Li, K. Xue, Y. D. Li, Q. Wang, Appl. Opt. 51, 7052–7058 (2012)

  12. D. L. Donoho, IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

  13. E. Candes, J. Romberg, T. Tao, IEEE Trans. Inf. Theory 52, 489–509 (2006)

  14. L.I. Rudin, S. Oscher, E. Fatemi, Physica D 60, 259–268 (1992)

    Article  MATH  ADS  Google Scholar 

  15. J. M. Bioucas–Das, M. A. T. Figueiredo, IEEE Trans. Image Process. 16, 2992–3004 (2007)

  16. S. Lim, D.L. Marks, D.J. Brady, Appl. Opt. 50, H75–H86 (2011)

    Article  Google Scholar 

  17. F.J. Harris, Proc. IEEE 1, 51–83 (1978)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant 61377110) and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) of China (20112302110028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, YD. Continuous-wave 2.52 Terahertz Gabor inline compressive holographic tomography. Appl. Phys. B 117, 585–596 (2014). https://doi.org/10.1007/s00340-014-5871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5871-5

Keywords

Navigation