Skip to main content
Log in

Reducing the line curvature error of mechanically ruled gratings by interferometric control

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Line curvature error greatly influences the quality of the diffraction wave fronts of machine-ruling gratings. To reduce the line curvature error, we propose a correction method that uses interferometric control. This method uses diffraction wave fronts of symmetrical orders to compute the mean line curvature error of the ruled grating, taking the mean line curvature error as the system line curvature error. To minimize the line curvature error of the grating, a dual-frequency laser interferometer is used as a real-time position feedback for the grating ruling stage, along with using a piezoelectric actuator to adjust the stage positioning to compensate the line curvature error. Our experiments show that the proposed method effectively reduced the peak-to-valley value of the line curvature error, improving the quality of the grating diffraction wave front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. G.R. Harrison, S.W. Thompson, H. Kazukonis, J.R. Connell, 750-mm ruling engine producing large gratings and echelles. J. Opt. Soc. Am. 62(6), 751–756 (1972)

    Article  ADS  Google Scholar 

  2. F.M. Gerasimov, Use of diffraction gratings for controlling a ruling engine. Appl. Opt. 6(11), 1861–1864 (1967)

    Article  ADS  Google Scholar 

  3. T. Jitsuno1, S. Motokoshi et al., Development of 91 cm size gratings and mirrors for LEFX laser system. J. Phys Conf. Ser. 112, 1–4 (2008)

    Google Scholar 

  4. T. Suzuki, H. Kubo et al., High-resolution multi grating spectrometer for high quality deep UV light source production. Proc. SPIE Opt. Microlithogr. XIV 4346, 1254–1261 (2001)

    Article  ADS  Google Scholar 

  5. J. Flamand, F. Bonnemason, A. Thevenon, The blazing of holographic gratings using ion-etching. Proc. SPIE 1055, 288–294 (1989)

    Article  ADS  Google Scholar 

  6. D. Nevejans, E. Neefs, E. van Ransbeeck et al., Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 μm. Appl. Opt. 45(21), 5191–5206 (2006)

    Article  ADS  Google Scholar 

  7. K. Takashima, S. Nawata, Diffraction grating ruling engine with piezoelectric control. Jpn. J. Appl. Phys. 17(8), 1445–1446 (1978)

    Article  ADS  Google Scholar 

  8. I.R. Bartlett, P.C. Wildy, Diffraction grating ruling engine with piezoelectric drive. Appl. Opt. 14(1), 1–3 (1975)

    Article  ADS  Google Scholar 

  9. T. Kita, T. Harada, Ruling engine using a piezoelectric device for large and high-groove density gratings. Appl. Opt. 31(8), 1399–1406 (1992)

    Article  ADS  Google Scholar 

  10. J. Strong, The Johns Hopkins University and diffraction gratings. J. Opt. Soc. Am. 50(12), 1148–1152 (1960)

    Article  ADS  Google Scholar 

  11. G.R. Harrison, The production of diffraction gratings I. Development of the ruling art. J. Opt. Soc. Am. 39(6), 413–425 (1949)

    Article  ADS  Google Scholar 

  12. G.R. Harrison, G.W. Stroke, Interferometric control of grating ruling with continuous carriage advance. J. Opt. Soc. Am. 45(2), 112–120 (1955)

    Article  ADS  Google Scholar 

  13. G.R. Harrison, Techniques for Ruling Improved Large Diffraction Gratings Final Report (Massachusetts Institute of Technology, Cambridge, 1971), pp. 1–14

    Google Scholar 

  14. G.R. Harrison, The diffraction grating—an opinionated appraisal. Appl. Opt. 12(9), 2039–2048 (1973)

    Article  ADS  Google Scholar 

  15. X. Li, B. Bayanheshig, X. Qi et al., Influence and revising method of machine-ruling grating line’s curve error, location error on plane grating’s performance. Chin. J. Lasers 40(3), 0308009 (2013). (in Chinese)

    Article  Google Scholar 

  16. X. Li, Bayanheshig, X. Qi et al., Two-dimensional fast Fourier transform method of analyzing the influence of plane grating’s line error and surface error. Acta Opt. Sin. 32(11), 1105001 (2012). (in Chinese)

    Article  Google Scholar 

  17. Z. Jaroszewicz, Interferometric testing of the spacing error of a plane diffraction grating. Opt. Commun. 60(6), 345–349 (1986)

    Article  ADS  Google Scholar 

  18. G.R. Harrison, N. Sturgis et al., Interferometrically controlled ruling of ten-inch diffraction gratings. J. Opt. Soc. Am. 49(3), 205–211 (1959)

    Article  ADS  Google Scholar 

  19. G.W. Stroke, Attainment of high-resolution gratings by ruling under interferometric control. J. Opt. Soc. Am. 51(10), 1321–1339 (1961)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge supports from the Chinese Finance Ministry for the National R&D Projects for Key Scientific Instruments (Grant ZDYZ2008-1) and from Ministry of national science and technology for National Key Basic Research Program of China (Grant 2014CB049500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haili Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Li, X., Zhu, J. et al. Reducing the line curvature error of mechanically ruled gratings by interferometric control. Appl. Phys. B 117, 279–286 (2014). https://doi.org/10.1007/s00340-014-5832-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5832-z

Keywords

Navigation