Skip to main content
Log in

Linewidth of collimated wavelength-converted emission in Rb vapour

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a study of the spectral linewidth of collimated blue light (CBL) that results from wave mixing of low-power continuous-wave laser radiation at 780 and 776 nm and an internally generated mid-IR field at 5.23 μm in Rb vapour. Using a high-finesse Fabry–Perot interferometer, the spectral width of the CBL is found to be <1.3 MHz for a wide range of experimental conditions. We demonstrate using frequency-modulated laser light that the CBL linewidth is mainly limited by the temporal coherence of the applied laser fields rather than the atom–light interaction itself. The obtained result allows the same 1.3 MHz upper limit to be set for the linewidth of the collimated mid-IR radiation at 5.23 μm, which has not been directly detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.C. Hanna, M.A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules, vol. 17 (Springer, Berlin, 1979). Springer series in Optical Sciences

    Google Scholar 

  2. T. Efthimiopoulos, M.E. Movsessian, M. Katharakis, N. Merlemis, J. Appl. Phys. 80, 639 (1996) and references therein

    Article  ADS  Google Scholar 

  3. A.S. Zibrov, M.D. Lukin, L. Hollberg, M.O. Scully, Phys. Rev. A 65(5), 051801 (2002)

    Article  ADS  Google Scholar 

  4. T. Meijer, J.D. White, B. Smeets, M. Jeppesen, R.E. Scholten, Opt. Lett. 31(7), 1002 (2006)

    Article  ADS  Google Scholar 

  5. A.M. Akulshin, R.J. McLean, A.I. Sidorov, P. Hannaford, Opt. Express 17, 22861 (2009)

    Article  ADS  Google Scholar 

  6. J.T. Schultz, S. Abend, D. Döring, J.E. Debs, P.A. Altin, J.D. White, N.P. Robins, J.D. Close, Opt. Lett. 34, 2321 (2009)

    Article  ADS  Google Scholar 

  7. A. Vernier, S. Franke-Arnold, E. Riis, A.S. Arnold, Opt. Express 18, 17026 (2010)

    Article  ADS  Google Scholar 

  8. G. Walker, A.S. Arnold, S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012)

    Article  ADS  Google Scholar 

  9. J.F. Sell, M.A. Gearba, B.D. DePaola, R.J. Knize, Opt. Lett. 39, 528 (2014)

    Article  ADS  Google Scholar 

  10. M.B. Kienlen, N.T. Holte, H.A. Dassonville, A.M.C. Dawes, K.D. Iversen, R.M. McLaughlin, S.K. Mayer, Am. J. Phys. 81, 442 (2013)

    Article  ADS  Google Scholar 

  11. A.G. Radnaev, Y.O. Dudin, R. Zhao, H.H. Jen, S.D. Jenkins, A. Kuzmich, T.A.B. Kennedy, Nat. Phys. 6, 894 (2010)

    Article  Google Scholar 

  12. C.F. Ockeloen, A.F. Tauschinsky, R.J.C. Spreeuw, S. Whitlock, Phys. Rev. A 82, 061606(R) (2010)

    Article  ADS  Google Scholar 

  13. A.M. Akulshin, Ch. Perrella, G.-W. Truong, R.J. McLean, A. Luiten, J. Phys. B At. Mol. Opt. Phys. 45, 245503 (2012)

    Article  ADS  Google Scholar 

  14. A.M. Akulshin, A.A. Orel, R.J. McLean, J. Phys. B At. Mol. Opt. Phys. 45, 015401 (2012)

    Article  ADS  Google Scholar 

  15. A.M. Akulshin, N.G. Basov, V.L. Velichansky, A.S. Zibrov, M.V. Zverkov, V.V. Nikitin, O.G. Ochotnikov, N.V. Senkov, V.A. Sautenkov, D.A. Tyurikov, E.K. Yurkin, Sov. J. Quantum Electron. 13, 1003 (1983)

    Article  ADS  Google Scholar 

  16. D.Z. Anderson, J.C. Frisch, C.S. Masser, Appl. Opt. 23, 1238 (1984)

    Article  ADS  Google Scholar 

  17. R. Hui, A. Mecozzi, Appl. Phys. Lett. 60, 2454 (1992)

    Article  ADS  Google Scholar 

  18. A.P. Anthur, R.T. Watts, K. Shi, J. O’Carroll, D. Venkitesh, L.P. Barry, Opt. Express 21, 15568 (2013)

    Article  Google Scholar 

  19. A.S. Zibrov, M.D. Lukin, M. Scully, Phys. Rev. Lett. 83, 4049 (1999)

    Article  ADS  Google Scholar 

  20. A.M. Akulshin, R.J. McLean, A.I. Sidorov, P. Hannaford, J. Phys. B At. Mol. Opt. Phys. 44, 175502 (2011)

    Article  ADS  Google Scholar 

  21. A.M. Akulshin, R.J. McLean, Phys. Rev. A 85, 065802 (2012)

    Article  ADS  Google Scholar 

  22. A.S. Zibrov, I. Novikova, JETP Lett. 82, 110 (2005)

    Article  ADS  Google Scholar 

  23. A. Akulshin, D. Budker, R. McLean, Opt. Lett. 39, 845 (2014)

    Google Scholar 

  24. A. Akulshin, D. Budker, B. Patton, R. McLean, http://iconolat13.phys.msu.ru/ICONO_LAT-2013/Proceedings.html

  25. W. Happer, G.J. MacDonald, C.E. Max, F.J.J. Dyson, Opt. Soc. Am. A11, 263 (1994)

    Article  ADS  Google Scholar 

  26. B. Zhdanov, R. Knize, Opt. Eng. 52, 021010 (2013)

    Article  ADS  Google Scholar 

  27. A. Schilke, C. Zimmermann, P.W. Courteille, W. Guerin, Nat. Photonics 6, 101 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the ARC Centre of Excellence for Quantum Atom Optics. A.L., C.P. and G.W.T. thank the ARC for supporting this research through the DP0877938 and FT0990301 research Grants. Also A.L. and C.P. acknowledge support by the South Australian Government through the Premier’s Science and Research Fund. D.B. is grateful to the Centre for Quantum and Optical Science at the Swinburne University of Technology for hosting him as a Distinguished Visiting Researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Akulshin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akulshin, A., Perrella, C., Truong, GW. et al. Linewidth of collimated wavelength-converted emission in Rb vapour. Appl. Phys. B 117, 203–209 (2014). https://doi.org/10.1007/s00340-014-5823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5823-0

Keywords

Navigation