Advertisement

Applied Physics B

, Volume 117, Issue 1, pp 121–125 | Cite as

Direct laser writing of symmetry-broken nanocorrals and their applications in SERS spectroscopy

  • Jiajia Mu
  • Jiafang Li
  • Wuxia Li
  • Shengsheng Sun
  • Weijie Sun
  • Changzhi Gu
Article
  • 288 Downloads

Abstract

We propose a simple and fast approach to prepare surface-enhanced Raman scattering (SERS) substrates over a large area with high flexibility by using direct laser writing (DLW) technique. The proposal is demonstrated by the direct fabrication of an array and a complex of symmetry-broken nanocorrals with DLW followed by a metal deposition process. SERS measurements show significant SERS enhancement, which can be controlled through engineering the focused “hot spots” by changing the structural parameters. The experimental observations are further confirmed by our simulations with a finite-difference time-domain tool. The studies can be extended to versatile SERS substrates with arbitrary geometries.

Keywords

SERS Focal Spot SERS Spectrum SERS Signal SERS Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the 973 Program of China (Grant Nos. 2009CB930502, 2013CB632704 and 2013CB922404), the National Natural Science Foundation of China (Grant Nos. 91123004, 11104334, 11104342, 50825206, 10834012, and 60801043), the Outstanding Technical Talent Program of the Chinese Academy of Sciences and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W02).

References

  1. 1.
    S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997)CrossRefGoogle Scholar
  2. 2.
    J.A. Dieringer, R.B. Lettan, K.A. Scheidt, R.P. Van Duyne, A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129, 16249 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Fan, A.G. Brolo, Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys. Chem. Chem. Phys. 11, 7381 (2009)CrossRefGoogle Scholar
  4. 4.
    H. Xu, E.J. Bjerneld, M. Kall, L. Borjesseon, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357 (1999)CrossRefADSGoogle Scholar
  5. 5.
    J.P. Camden, J.A. Dieringer, Y.M. Wang, D.J. Masiello, L.D. Marks, G.C. Schatz, R.P. Van Duyne, Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616 (2008)CrossRefGoogle Scholar
  6. 6.
    J.N. Chen, W.S. Yang, K. Dick, K. Deppert, H.Q. Xu, L. Samuelson, H.X. Xu, Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles. Appl. Phys. Lett. 92, 093110 (2008)CrossRefADSGoogle Scholar
  7. 7.
    H.W. Liu, L. Zhang, X.Y. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q.K. Xue, M.W. Chen, Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Scientific Reports 10 (2011)Google Scholar
  8. 8.
    A. Ahmed, R. Gordon, Single molecule directivity enhanced Raman scattering using nanoantennas. Nano Lett. 12, 2625 (2012)CrossRefADSGoogle Scholar
  9. 9.
    M.G. Nielsen, A. Pors, O. Albrektsen, S.I. Bozhevolnyi, Efficient absorption of visible radiation by gap plasmon resonators. Opt. Exp. 20, 13311 (2012)CrossRefADSGoogle Scholar
  10. 10.
    Y.L. Wang, K. Lee, J. Irudayaraj, SERS aptasensor from nanorod-nannoparticle junction for protein detection. Chem. Commun. 46, 613 (2010)CrossRefGoogle Scholar
  11. 11.
    G. Chen, Y. Wang, M.X. Yang, J. Xu, S.J. Goh, M. Pan, H.Y. Chen, Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J. Am. Chem. Soc. 132, 3644 (2010)CrossRefGoogle Scholar
  12. 12.
    C.E. Talley, J.B. Jcakson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569 (2005)CrossRefADSGoogle Scholar
  13. 13.
    L. Liu, Z.H. Han, S.L. He, Novel surface plasmon waveguide for high integration. Opt. Exp. 13, 6645 (2005)CrossRefADSGoogle Scholar
  14. 14.
    Z.Y. Fang, Q. Peng, W.T. Song, X. Zhu, Plasmonic focusing in symmetry broken nanocorrals. Nano Lett. 11, 893 (2011)CrossRefADSGoogle Scholar
  15. 15.
    S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132 (1997)CrossRefADSGoogle Scholar
  16. 16.
    D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, X. Duan, Reduction in feature size of two-photon polymerization using scr500. Appl. Phys. Lett. 90, 071106 (2007)CrossRefADSGoogle Scholar
  17. 17.
    J. Li, B. Jia, M. Gu, Engineering stop gaps of inorganic–organic polymeric 3d woodpile photonic crystals with post-thermal treatment. Opt. Express 16, 20073 (2008)CrossRefADSGoogle Scholar
  18. 18.
    M.S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008)CrossRefADSGoogle Scholar
  19. 19.
    M. Thiel, M.S. Rill, G. Freymann, M. Wegener, Three-dimensional bi-chiral photonic crystals. Adv. Mater. 21, 4680 (2009)CrossRefGoogle Scholar
  20. 20.
    H.Z. Yu, H.L. Zhang, Z.F. Liu, Surface-enhanced Raman scattering (SERS) from azobenzene self-assembled “Sandwiches”. Langmuir 15, 16 (1999)CrossRefGoogle Scholar
  21. 21.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14, R597 (2002)CrossRefADSGoogle Scholar
  22. 22.
    A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-enhanced Raman scattering. J. Phys. Condens. Matter 4, 1143 (1992)CrossRefADSGoogle Scholar
  23. 23.
    A.F. Oskooi, D. Roundy, M. Ibanescu, P. Berme, J.D. Joannopoulos, S.G. Johnson, MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)CrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations