Skip to main content
Log in

Direct laser writing of symmetry-broken nanocorrals and their applications in SERS spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose a simple and fast approach to prepare surface-enhanced Raman scattering (SERS) substrates over a large area with high flexibility by using direct laser writing (DLW) technique. The proposal is demonstrated by the direct fabrication of an array and a complex of symmetry-broken nanocorrals with DLW followed by a metal deposition process. SERS measurements show significant SERS enhancement, which can be controlled through engineering the focused “hot spots” by changing the structural parameters. The experimental observations are further confirmed by our simulations with a finite-difference time-domain tool. The studies can be extended to versatile SERS substrates with arbitrary geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997)

    Article  Google Scholar 

  2. J.A. Dieringer, R.B. Lettan, K.A. Scheidt, R.P. Van Duyne, A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129, 16249 (2007)

    Article  Google Scholar 

  3. M. Fan, A.G. Brolo, Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys. Chem. Chem. Phys. 11, 7381 (2009)

    Article  Google Scholar 

  4. H. Xu, E.J. Bjerneld, M. Kall, L. Borjesseon, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357 (1999)

    Article  ADS  Google Scholar 

  5. J.P. Camden, J.A. Dieringer, Y.M. Wang, D.J. Masiello, L.D. Marks, G.C. Schatz, R.P. Van Duyne, Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616 (2008)

    Article  Google Scholar 

  6. J.N. Chen, W.S. Yang, K. Dick, K. Deppert, H.Q. Xu, L. Samuelson, H.X. Xu, Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles. Appl. Phys. Lett. 92, 093110 (2008)

    Article  ADS  Google Scholar 

  7. H.W. Liu, L. Zhang, X.Y. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q.K. Xue, M.W. Chen, Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Scientific Reports 10 (2011)

  8. A. Ahmed, R. Gordon, Single molecule directivity enhanced Raman scattering using nanoantennas. Nano Lett. 12, 2625 (2012)

    Article  ADS  Google Scholar 

  9. M.G. Nielsen, A. Pors, O. Albrektsen, S.I. Bozhevolnyi, Efficient absorption of visible radiation by gap plasmon resonators. Opt. Exp. 20, 13311 (2012)

    Article  ADS  Google Scholar 

  10. Y.L. Wang, K. Lee, J. Irudayaraj, SERS aptasensor from nanorod-nannoparticle junction for protein detection. Chem. Commun. 46, 613 (2010)

    Article  Google Scholar 

  11. G. Chen, Y. Wang, M.X. Yang, J. Xu, S.J. Goh, M. Pan, H.Y. Chen, Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J. Am. Chem. Soc. 132, 3644 (2010)

    Article  Google Scholar 

  12. C.E. Talley, J.B. Jcakson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569 (2005)

    Article  ADS  Google Scholar 

  13. L. Liu, Z.H. Han, S.L. He, Novel surface plasmon waveguide for high integration. Opt. Exp. 13, 6645 (2005)

    Article  ADS  Google Scholar 

  14. Z.Y. Fang, Q. Peng, W.T. Song, X. Zhu, Plasmonic focusing in symmetry broken nanocorrals. Nano Lett. 11, 893 (2011)

    Article  ADS  Google Scholar 

  15. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132 (1997)

    Article  ADS  Google Scholar 

  16. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, X. Duan, Reduction in feature size of two-photon polymerization using scr500. Appl. Phys. Lett. 90, 071106 (2007)

    Article  ADS  Google Scholar 

  17. J. Li, B. Jia, M. Gu, Engineering stop gaps of inorganic–organic polymeric 3d woodpile photonic crystals with post-thermal treatment. Opt. Express 16, 20073 (2008)

    Article  ADS  Google Scholar 

  18. M.S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008)

    Article  ADS  Google Scholar 

  19. M. Thiel, M.S. Rill, G. Freymann, M. Wegener, Three-dimensional bi-chiral photonic crystals. Adv. Mater. 21, 4680 (2009)

    Article  Google Scholar 

  20. H.Z. Yu, H.L. Zhang, Z.F. Liu, Surface-enhanced Raman scattering (SERS) from azobenzene self-assembled “Sandwiches”. Langmuir 15, 16 (1999)

    Article  Google Scholar 

  21. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14, R597 (2002)

    Article  ADS  Google Scholar 

  22. A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-enhanced Raman scattering. J. Phys. Condens. Matter 4, 1143 (1992)

    Article  ADS  Google Scholar 

  23. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Berme, J.D. Joannopoulos, S.G. Johnson, MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the 973 Program of China (Grant Nos. 2009CB930502, 2013CB632704 and 2013CB922404), the National Natural Science Foundation of China (Grant Nos. 91123004, 11104334, 11104342, 50825206, 10834012, and 60801043), the Outstanding Technical Talent Program of the Chinese Academy of Sciences and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiafang Li or Changzhi Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, J., Li, J., Li, W. et al. Direct laser writing of symmetry-broken nanocorrals and their applications in SERS spectroscopy. Appl. Phys. B 117, 121–125 (2014). https://doi.org/10.1007/s00340-014-5810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5810-5

Keywords

Navigation