Skip to main content
Log in

Quantum-noise-limited cavity ring-down spectroscopy

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate a heterodyne-detected cavity ring-down spectroscopy (CRDS) method that allows for a noise-equivalent absorption coefficient of 6 × 10−14 cm−1 Hz−1/2, the lowest which has been reported in a CRDS measurement. It is shown that heterodyne-detected CRDS also reaches the quantum noise limit at reasonable optical powers. In addition to offering ultra-high sensitivity, this technique provides high frequency agility over a range of 2 THz in the near-infrared, which allows entire absorption bands to be recorded in minutes. As a demonstration experiment, high resolution spectra of a near-infrared carbon dioxide band have been recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A.M. Kaufman, B.J. Lester, C.A. Regal, Phys. Rev. X 2(4), 041014 (2012)

    Google Scholar 

  2. W.E. Moerner, L. Kador, Phys. Rev. Lett. 62(21), 2535–2538 (1989)

    Article  ADS  Google Scholar 

  3. A. Gaiduk, M. Yorulmaz, P.V. Ruijgrok, M. Orrit, Science 330(6002), 353–356 (2010)

    Article  ADS  Google Scholar 

  4. C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C.J. Bordé, C. Chardonnet, Phys. Rev. Lett. 98(25), 250801 (2007)

    Article  ADS  Google Scholar 

  5. J.M. Hartmann, H. Tran, N.H. Ngo, X. Landsheere, P. Chelin, Y. Lu, A.W. Liu, S.M. Hu, L. Gianfrani, G. Casa, A. Castrillo, M. Lepere, Q. Deliere, M. Dhyne, L. Fissiaux, Phys. Rev. A 87(1), 013403 (2013)

    Article  ADS  Google Scholar 

  6. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59(12), 2544–2551 (1988)

    Article  ADS  Google Scholar 

  7. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19(4), 565–607 (2000)

    Article  Google Scholar 

  8. M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, J.S. Harris, R.N. Zare, Chem. Phys. Lett. 290(4–6), 335–340 (1998)

    Article  ADS  Google Scholar 

  9. M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, R.N. Zare, M.J. Lawrence, R.L. Byer, Opt. Lett. 25(12), 920–922 (2000)

    Article  ADS  Google Scholar 

  10. J. Ye, J.L. Hall, Phys. Rev. A 61(6), 061802 (2000)

    Article  ADS  Google Scholar 

  11. D.A. Long, G.-W. Truong, R.D. Van Zee, D.F. Plusquellic, J.T. Hodges, Appl. Phys. B 114(4), 489–495 (2014)

    Article  ADS  Google Scholar 

  12. G.W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges, D.A. Long, Nat. Photon. 7(7), 532–534 (2013)

    Article  ADS  Google Scholar 

  13. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31(2), 97–105 (1983)

    Article  ADS  Google Scholar 

  14. T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Willke, R.L. Byer, Rev. Sci. Instrum. 71(2), 347–353 (2000)

    Article  ADS  Google Scholar 

  15. J. Ye, L.S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15(1), 6–15 (1998)

    Article  ADS  Google Scholar 

  16. P. Ehlers, I. Silander, J. Wang, O. Axner, J. Opt. Soc. Am. B 29(6), 1305–1315 (2012)

    Article  Google Scholar 

  17. G.-W. Truong, D.A. Long, A. Cygan, D. Lisak, R.D. Van Zee, J.T. Hodges, J. Chem. Phys. 138, 094201 (2013)

    Article  ADS  Google Scholar 

  18. A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, J. Ye, Phys. Rev. Lett. 107(23), 233002 (2011)

    Article  ADS  Google Scholar 

  19. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hansch, N. Picque, Nat. Photon. 4(1), 55–57 (2010)

    Article  ADS  Google Scholar 

  20. N.R. Newbury, I. Coddington, W. Swann, Opt. Express 18(8), 7929–7945 (2010)

    Article  Google Scholar 

  21. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. LeRoy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Support was provided by an NIST Innovation in Measurement Science award and the NIST Greenhouse Gas Measurements and Climate Research Program. S. W. was partially supported by the Foundation for Polish Science TEAM Project co-financed by the EU European Regional Development Fund. We also thank H. Otten and J. Dement for loaning us the arbitrary waveform generator and offering assistance in generating the required waveforms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Long.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Further experimental details can be found in the Supplemental Material (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, D.A., Fleisher, A.J., Wójtewicz, S. et al. Quantum-noise-limited cavity ring-down spectroscopy. Appl. Phys. B 115, 149–153 (2014). https://doi.org/10.1007/s00340-014-5808-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5808-z

Keywords

Navigation