Skip to main content
Log in

Wavelength response and thermal stability of embedded nanograting structure light attenuator fabricated by direct femtosecond laser writing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Planar structure consisting of line array with embedded nanogratings, which can function as a polarization-dependent light attenuator, was fabricated inside fused silica using a tightly focused 1 kHz fs laser scanning. Microstructure in the laser-modified region was characterized with Raman spectroscopy and scanning electron microscopy. Wavelength response and thermal stability of the structure were studied. The polarization-dependent attenuation efficiency decreases with increasing wavelength. The structure can resist high temperature up to 900 °C, and proper heat treatment can improve its attenuation efficiency. The results provide some new insights into the characteristics of fs laser-induced self-organized nanogratings and an alternative way to produce a polarization-dependent light attenuator that can be used in harsh environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, MRS Bull. 31, 620 (2006)

    Article  Google Scholar 

  2. R.A. Ganeev, M. Baba, T. Ozaki, H. Kuroda, J. Opt. Soc. Am. B 27, 1077 (2010)

    Article  ADS  Google Scholar 

  3. C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, S. Metev, J. Opt. A 7, 492 (2005)

    Article  ADS  Google Scholar 

  4. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  5. J.D. Mills, P.G. Kazansky, E. Bricchi, J.J. Baumberg, Appl. Phys. Lett. 81, 196 (2002)

    Article  ADS  Google Scholar 

  6. K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, J.G. Fujimoto, Opt. Lett. 26, 1516 (2001)

    Article  ADS  Google Scholar 

  7. Y. Shimotsuma, M. Sakakura, P.G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, Adv. Mater. 22, 4039 (2010)

    Article  Google Scholar 

  8. Y. Shimotsuma, K. Miura, H. Kazuyuki, Int. J. Appl. Glass. Sci. 4, 182 (2013)

    Article  Google Scholar 

  9. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, K. Midorikawa, Opt. Lett. 38, 187 (2013)

    Article  ADS  Google Scholar 

  10. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  11. D.G. Papazoglou, M.J. Loulakis, Opt. Lett. 31, 1441 (2006)

    Article  ADS  Google Scholar 

  12. Y. Shimotsuma, M. Sakakura, K. Miura, Opt. Mater. Express 1, 803 (2011)

    Article  Google Scholar 

  13. M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, P.G. Kazansky, Appl. Phys. Lett. 103, 131903 (2013)

    Article  ADS  Google Scholar 

  14. M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, P.G. Kazansky, Opt. Express 21, 3959 (2013)

    Article  ADS  Google Scholar 

  15. E. Bricchi, J.D. Mills, P.G. Kazansky, B.G. Klappauf, J.J. Baumberg, Opt. Lett. 27, 2200 (2002)

    Article  ADS  Google Scholar 

  16. M. Beresna, M. Gecevičius, P.G. Kazansky, T. Gertus, Appl. Phys. Lett. 98, 201101 (2011)

    Article  ADS  Google Scholar 

  17. R. Taylor, C. Hnatovsky, E. Simova, Laser Photon. Rev. 2, 26 (2008)

    Article  Google Scholar 

  18. P.G. Kazansky, Y. Shimotsuma, J. Ceram. Soc. Japan. 116, 1052 (2008)

    Article  Google Scholar 

  19. M. Beresna, P.G. Kazansky, Opt. Lett. 35, 1662 (2010)

    Article  Google Scholar 

  20. F. Zhang, Y. Yu, C. Cheng, Y. Dai, J. Qiu, Opt. Lett. 38, 2212 (2013)

    Article  Google Scholar 

  21. P. Lalanne, D. Lemercier-Lalanne, J. Modern Opt. 43, 2063 (1996)

    Article  ADS  Google Scholar 

  22. A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 5145 (1998)

    Article  ADS  Google Scholar 

  23. J.W. Chan, T. Huser, S. Risbud, D.M. Krol, Opt. Lett. 26, 1726 (2001)

    Article  ADS  Google Scholar 

  24. E. Bricchi, B.G. Klappauf, P.G. Kazansky, Opt. Lett. 29, 119 (2004)

    Article  ADS  Google Scholar 

  25. V.R. Bhardwaj, P.B. Corkum, D.M. Rayner, C. Hnatovsky, E. Simova, R.S. Taylor, Opt. Lett. 29, 1312 (2004)

    Article  ADS  Google Scholar 

  26. E. Bricchi, P.G. Kazansky, Appl. Phys. Lett. 88, 111119 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grants No. 51072054, 51072060, 51132004), Guangdong Natural Science Foundation (Grant No. S2011030001349), and National Basic Research Program of China (2011CB808100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Yu, Y., Cheng, C. et al. Wavelength response and thermal stability of embedded nanograting structure light attenuator fabricated by direct femtosecond laser writing. Appl. Phys. B 117, 53–58 (2014). https://doi.org/10.1007/s00340-014-5797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5797-y

Keywords

Navigation