Applied Physics B

, Volume 116, Issue 4, pp 1017–1021 | Cite as

Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip

  • Stefan MinnibergerEmail author
  • Fritz Diorico
  • Stefan Haslinger
  • Christoph Hufnagel
  • Christian Novotny
  • Nils Lippok
  • Johannes Majer
  • Christian Koller
  • Stephan Schneider
  • Jörg SchmiedmayerEmail author


We report the realization of a robust magnetic transport scheme to bring >3 × 108 ultracold 87Rb atoms into a cryostat. The sequence starts with standard laser cooling and trapping of 87Rb atoms, transporting first horizontally and then vertically through the radiation shields into a cryostat by a series of normal- and superconducting magnetic coils. Loading the atoms in a superconducting microtrap paves the way for studying the interaction of ultracold atoms with superconducting surfaces and quantum devices requiring cryogenic temperatures.


Ultracold Atom Quadrupole Trap Niobium Film Cryogenic Environment Magnetic Quadrupole Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



SM and FD would like to acknowledge the support of the COQUS doctoral program. This work was funded through the European Union Integrated Project SIQS and the Austrian Science Fund FWF (Wittgenstein Prize, SFB FOQUS).


  1. 1.
    R.J. Schoelkopf, S.M. Girvin, Wiring up quantum systems. Nature 451, 664–669 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, P. Zoller, Hybrid quantum devices and quantum engineering. Phys. Scr. 2009(T137), 014001 (2009)CrossRefGoogle Scholar
  3. 3.
    Z.-L. Xiang, J. Sahel Ashhab, Q. You, N. Franco, Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    P. Rabl, D. DeMille, J.M. Doyle, M.D. Lukin, R.J. Schoelkopf, P. Zoller, Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    A. Andre, D. DeMille, J.M. Doyle, M.D. Lukin, S.E. Maxwell, P. Rabl, R.J. Schoelkopf, P. Zoller, Wiring up quantum systems. Nat. Phys. 2, 636–642 (2008)CrossRefGoogle Scholar
  6. 6.
    A.S. Sørensen, C.H. van der Wal, L.I. Childress, M.D. Lukin, Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    D. Petrosyan, M. Fleischhauer, Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators. Phys. Rev. Lett. 100, 170501 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, J. Schmiedmayer, Reversible state transfer between superconducting qubits and atomic ensembles. Phys. Rev. A 79, 040304 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, J. Schmiedmayer, Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103, 043603 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    K. Henschel, J. Majer, J. Schmiedmayer, H. Ritsch, Cavity QED with an ultracold ensemble on a chip: prospects for strong magnetic coupling at finite temperatures. Phys. Rev. A 82, 033810 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    M. Hafezi, Z. Kim, S.L. Rolston, L.A. Orozco, B.L. Lev, J.M. Taylor, Atomic interface between microwave and optical photons. Phys. Rev. A 85, 020302 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, J. Fortágh, Manipulation and coherence of ultra-cold atoms on a superconducting atom chip. Nat. Commun. 4, 2380 (2013)ADSGoogle Scholar
  13. 13.
    R. Amsüss, Ch. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, J. Majer, Cavity qed with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    H. Wu, R.E. George, J.H. Wesenberg, K. Mølmer, D.I. Schuster, R.J. Schoelkopf, K.M. Itoh, A. Ardavan, J.L. Morton, G. Briggs, D. Andrew, Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    D.I. Schuster, A.P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J.J.L. Morton, H. Wu, G.A.D. Briggs, B.B. Buckley, D.D. Awschalom, R.J. Schoelkopf, High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, P. Bergonzo, D. Esteve, Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A. Imamoğlu, Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M. Greiner, I. Bloch, T.W. Hänsch, T. Esslinger, Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A 63, 031401 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    S. Schmid, G. Thalhammer, K. Winkler, F. Lang, J.H. Denschlag, Long distance transport of ultracold atoms using a 1d optical lattice. New J. Phys. 8(8), 159 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    A.P. Chikkatur, Y. Shin, A.E. Leanhardt, D. Kielpinski, E. Tsikata, T.L. Gustavson, D.E. Pritchard, W. Ketterle, A continuous source of Bose–Einstein condensed atoms. Science 296(5576), 2193–2195 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    T. Mukai, C. Hufnagel, A. Kasper, T. Meno, A. Tsukada, K. Semba, F. Shimizu, Persistent supercurrent atom chip. Phys. Rev. Lett. 98, 260407 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, T. Brune, J.M. Raimond, S. Haroche, Bose–Einstein condensation on a superconducting atom chip. Eur. Phys. Lett. 81, 81 (2008)Google Scholar
  23. 23.
    T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J.M. Raimond, S. Haroche, Realization of a superconducting atom chip. Phys. Rev. Lett. 97, 200405 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    F. Jessen, M. Knufinke, S. C. Bell, P. Vergien, H. Hattermann, P. Weiss, M. Rudolph, M. Reinschmidt, K. Meyer, T. Gaber, D. Cano, A. Günther, S. Bernon, D. Koelle, R. Kleiner, J. Fortágh. Trapping of ultracold atoms in a 3He/4He dilution refrigerator. Appl. Phys. B 1–7 (2013). doi: 10.1007/s00340-013-5750-5
  25. 25.
    M.A. Naides, R.W. Turner, R.A. Lai, J.M. DiSciacca, B.L. Lev, Trapping ultracold gases near cryogenic materials with rapid reconfigurability. Appl. Phys. Lett. 103(25), 251112 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    P.B. Antohi, D. Schuster, G.M. Akselrod, J. Labaziewicz, Y. Ge, Z. Lin, W.S. Bakr, I.L. Chuang, Cryogenic ion trapping systems with surface-electrode traps. Rev. Sci. Instrum. 80(1), 013103 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Cryostat: Advanced Research Systems (, Type ARS CS210*F-GMX-20, high-Tc wires: Superpower Inc. (, Type SCS4050, Niobium–Titanium wires: Supercon Inc.(, Type 54S43
  28. 28.
    T. McMillan, P. Taborek, J.E. Rutledge, A low drift high resolution cryogenic null ellipsometer. Rev. Sci. Instrum. 75(11), 5005 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    J. Simpsons, J. Lane, C. Immer, R. Youngquist, Simple analytic expressions for the magnetic field of a circular current loop. NASA technical documents, 2001Google Scholar
  30. 30.
    N. Lippok, A magnetic transport for ultracold atoms. Master’s thesis, Atominstitut TU Wien, Austria, 2008Google Scholar
  31. 31.
    S. Haslinger, Cold atoms in a cryogenic environment. PhD thesis, Atominstitut TU Wien, Austria, 2011Google Scholar
  32. 32.
    T. Esslinger, I. Bloch, T.W. Hänsch, Bose–Einstein condensation in a quadrupole-Ioffe-configuration trap. Phys. Rev. A 58, R2664–R2667 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    V. Dikovsky, V. Sokolovsky, B. Zhang, C. Henkel, R. Folman, Superconducting atom chips: advantages and challenges. Eur. J. Phys. D 51(2), 247–259 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    C. Hufnagel, Superconducting microtraps for ultracold atoms. PhD thesis, Atominstitut TU Wien / NTT Japan, 2011Google Scholar
  35. 35.
    O. Romero-Isart, C. Navau, A. Sanchez, P. Zoller, J.I. Cirac, Superconducting vortex lattices for ultracold atoms. Phys. Rev. Lett. 111, 145304 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    S. Doret, C. Colin, K. Wolfgang, D. John, Buffer-gas cooled Bose–Einstein condensate. Phys. Rev. Lett. 103(10), 103005 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    J.A. Sherman, N.D. Lemke, N. Hinkley, M. Pizzocaro, R.W. Fox, A.D. Ludlow, C.W. Oates, High-accuracy measurement of atomic polarizability in an optical lattice clock. Phys. Rev. Lett. 108(15), 153002 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, I. Bar-Joseph, Sensing electric and magnetic fields with Bose–Einstein condensates. Appl. Phys. Lett. 88(26), 264103 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    A. Emmert, A. Lupacu, G. Nogues, M. Brune, J.M. Raimond, S. Haroche, Measurement of the trapping lifetime close to a cold metallic surface on a cryogenic atom-chip. Eur. J. Phys. D 51(2), 173–177 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stefan Minniberger
    • 1
    Email author
  • Fritz Diorico
    • 1
  • Stefan Haslinger
    • 1
  • Christoph Hufnagel
    • 1
  • Christian Novotny
    • 1
  • Nils Lippok
    • 1
  • Johannes Majer
    • 1
  • Christian Koller
    • 1
  • Stephan Schneider
    • 1
  • Jörg Schmiedmayer
    • 1
    Email author
  1. 1.Vienna Center for Quantum Science and TechnologyAtominstitut/TU-WienViennaAustria

Personalised recommendations