Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases

Abstract

The design and validation of a tunable diode laser (TDL) sensor for temperature and H2O in high-pressure and -temperature gases are presented. High-fidelity measurements are enabled through the use of: (1) strong H2O fundamental-band absorption near 2.5 μm, (2) calibration-free first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f/1f), (3) an experimentally derived and validated spectroscopic database, and (4) a new approach to selecting the optimal wavelength and modulation depth of each laser. This sensor uses two TDLs near 2,474 and 2,482 nm that were fiber coupled in free space and frequency multiplexed to enable measurements along a single line-of-sight. The lasers were modulated at 35 and 45.5 kHz, respectively, to achieve a sensor bandwidth of 4.5 kHz. This sensor was validated in a shock tube at temperatures and pressures ranging from 1,000 to 2,700 K and 8 to 50 bar. There the sensor resolved transients and recovered the known steady-state temperature and H2O mole fraction with a precision of 3.2 and 2.6 % RMS, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    R.K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1–40 (2011)

    Article  Google Scholar 

  2. 2.

    S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines. Proc. Combust. Inst. 28, 587–594 (2000)

    Article  Google Scholar 

  3. 3.

    L.A. Kranendonk, J.W. Walewski, T. Kim, S.T. Sanders, Wavelength-agile sensor applied for HCCI engine measurements. Proc. Combust. Inst. 30, 1619–1627 (2005)

    Article  Google Scholar 

  4. 4.

    G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor. Proc. Combust. Inst. 31, 3041–3049 (2007)

    Article  Google Scholar 

  5. 5.

    G.B. Rieker, H. Li, X. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures. Meas. Sci. Technol. 18, 1195–1204 (2007)

    ADS  Article  Google Scholar 

  6. 6.

    K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing. Appl. Phys. B. 110, 497–508 (2012)

    Google Scholar 

  7. 7.

    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra. Appl. Opt. 43, 6500–6509 (2004)

    ADS  Article  Google Scholar 

  8. 8.

    V. Nagali, J.T. Herbon, D.C. Horning, D.F. Davidson, R.K. Hanson, Shock-tube study of high-pressure H2O spectroscopy. Appl. Opt. 38, 6942–6950 (1999)

    ADS  Article  Google Scholar 

  9. 9.

    A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, Measurements of multiple gas parameters in a pulsed-detonation combustor using time- mode-locked lasers. Appl. Opt. 52, 2893–2904 (2013)

    Google Scholar 

  10. 10.

    J. Wang, S.T. Sanders, J.B. Jeffries, R.K. Hanson, Oxygen measurements at high pressures with vertical cavity surface-emitting lasers. Appl. Phys. B 72, 865–872 (2001)

    ADS  Article  Google Scholar 

  11. 11.

    G.B. Rieker, X. Liu, H. Li, J.B. Jeffries, R.K. Hanson, Measurements of near-IR water vapor absorption at high pressure and temperature. Appl. Phys. B 87, 169–178 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    B.H. Armstrong, Spectrum line profiles: the Voigt function. J. Quant. Spectrosc. Radiat. Transf. 7, 61–88 (1967)

    ADS  Article  Google Scholar 

  13. 13.

    F. Herbert, Spectrum line profiles: a generalized Voigt function including collisional narrowing. J. Quant. Spectrosc. Radiat. Transf. 14, 943–951 (1974)

    ADS  Article  Google Scholar 

  14. 14.

    P.L. Varghese, R.K. Hanson, Collisional narrowing effects on spectral line shapes measured at high resolution. Appl. Opt. 23, 2376–2385 (1984)

    ADS  Article  Google Scholar 

  15. 15.

    L. Galatry, Simultaneous effect of Doppler and foreign gas broadening on spectral lines. Phys. Rev. 122, 1218–1223 (1961)

    ADS  Article  MATH  Google Scholar 

  16. 16.

    R.H. Dicke, The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953)

    ADS  Article  Google Scholar 

  17. 17.

    C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm. J. Quant. Spectrosc. Radiat. Transf. 130, 100–111 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    J. Reid, D. Labrie, Second-harmonic detection with tunable diode lasers—comparison of experiment and theory. Appl. Phys. B 26, 203–210 (1981)

    ADS  Article  Google Scholar 

  19. 19.

    D.T. Cassidy, L.J. Bonnell, Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm. Appl. Opt. 27, 2688–2693 (1988)

    ADS  Article  Google Scholar 

  20. 20.

    D.T. Cassidy, J. Reid, Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 21, 1185–1190 (1982)

    ADS  Article  Google Scholar 

  21. 21.

    T. Fernholz, H. Teichert, V. Ebert, Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions. Appl. Phys. B Lasers Opt. 75, 229–236 (2002)

    ADS  Article  Google Scholar 

  22. 22.

    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546–5560 (2009)

    Article  Google Scholar 

  23. 23.

    P. Kluczynski, Å.M. Lindberg, O. Axner, Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles. J. Quant. Spectrosc. Radiat. Transf. 83, 345–360 (2004)

    ADS  Article  Google Scholar 

  24. 24.

    P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38, 5803–5815 (1999)

    ADS  Article  Google Scholar 

  25. 25.

    C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, R. K. Hanson, Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 53, 356–367 (2014)

    Google Scholar 

  26. 26.

    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)

    ADS  Article  Google Scholar 

  27. 27.

    R.A. Toth, L.R. Brown, M.A.H. Smith, V. Malathy Devi, D. Chris Benner, M. Dulick, Air-broadening of H2O as a function of temperature: 696–2163 cm−1. J. Quant. Spectrosc. Radiat. Transf. 101, 339–366 (2006)

    ADS  Article  Google Scholar 

  28. 28.

    G. Wagner, M. Birk, R.R. Gamache, J.-M. Hartmann, Collisional parameters of lines: effect of temperature. J. Quant. Spectrosc. Radiat. Transf. 92, 211–230 (2005)

    ADS  Article  Google Scholar 

  29. 29.

    J.M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, Collisional broadening of rotation–vibration lines for asymmetric-top molecules. II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K range. J. Chem. Phys. 86, 144 (1987)

    ADS  Google Scholar 

  30. 30.

    J.M. Hartmann, M.Y. Perrin, Q. Ma, R.H. Tipping, The infrared continuum of pure water vapor: calculations and high-temperature measurements. J. Quant. Spectrosc. Radiat. Transf. 49, 675–691 (1993)

    ADS  Article  Google Scholar 

  31. 31.

    C. S. Goldenstein, R. M. Spearrin, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, Wavelength-modulation spectroscopy near 1.4 μm for measurements of H2O and temperature in high-pressure and -temperature gases. Meas. Sci. Technol. (2014) (in press)

  32. 32.

    R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Fiber-coupled 2.7 μm laser absorption sensor for CO2 in harsh combustion environments. Meas. Sci. Technol. 24, 055107 (2013)

    ADS  Article  Google Scholar 

  33. 33.

    X. Zhou, J.B. Jeffries, R.K. Hanson, Development of a fast temperature sensor for combustion gases using a single tunable diode laser. Appl. Phys. B 81, 711–722 (2005)

    ADS  Article  Google Scholar 

  34. 34.

    X. An, A. W. Caswell, J. J. Lipor, S. T. Sanders, Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-state energy. J. Quant. Spectrosc. Radiat. Transf. 112, 2355–2362 (2011)

    Google Scholar 

  35. 35.

    P.R. Bevington, D.K. Robinson, Data reduction and error analysis for the physical sciences (McGraw-Hill, New York, 1992)

    Google Scholar 

  36. 36.

    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines. Meas. Sci. Technol. 16, 2437–2445 (2005)

    ADS  Article  Google Scholar 

  37. 37.

    G. Ben-Dor, O. Igra, and T. Elperin, 2001 Handbook of Shock Waves (2001), p. Ch. 3.1 and 4.1

  38. 38.

    E.L. Petersen, R.K. Hanson, Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001)

    ADS  Article  Google Scholar 

  39. 39.

    L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael, Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy. Appl. Opt. 42, 2110–2118 (2003)

    ADS  Article  Google Scholar 

  40. 40.

    A. Farooq, J.B. Jeffries, R.K. Hanson, Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 μm. Appl. Opt. 48, 6740–6753 (2009)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Innovative Scientific Solutions Incorporated (ISSI) with Dr. John Hoke as technical monitor and by the Air Force Office of Scientific Research (AFOSR) and the National Center for Hypersonic Combined Cycle Propulsion, grant FA 9550-09-1-0611, with technical monitors Dr. Chiping Li (AFOSR) and Dr. Richard Gaffney (NASA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. S. Goldenstein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldenstein, C.S., Spearrin, R.M., Jeffries, J.B. et al. Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases. Appl. Phys. B 116, 705–716 (2014). https://doi.org/10.1007/s00340-013-5754-1

Download citation

Keywords

  • Shock Tube
  • Modulation Depth
  • Tunable Diode Laser
  • Beam Steering
  • Wavelength Pair