Skip to main content
Log in

Multiplexing photons with a binary division strategy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a scheme to produce clock-synchronized photons from a single parametric downconversion source with a binary division strategy. The time difference between a clock and detections of the herald photons determines the amount of delay that must be imposed to a photon by actively switching different temporal segments, so that all photons emerge from the output with their wavepackets temporally synchronized with the temporal reference. The operation is performed using a binary division configuration which minimizes the passages through switches. Finally, we extend this scheme to the production of many synchronized photons and find expressions for the optimal amount of correction stages as a function of the pair generation rate and the target coherence time. Our results show that, for the generation of this heralded single-photon per output state at an optimized input photon flux, the output rate of our scheme scales essentially with the reciprocal of the target output photon number. With current technology, rates of up to 104 synchronized pairs per second could be observed with only 7 correction stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Grangier, B. Sanders, J. Vuckovic, Focus on single photons on demand. New J. Phys. 6 (2004). doi:10.1088/1367-2630/6/1/E04

  2. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  ADS  Google Scholar 

  3. C. Bennett, G. Brassard, A. Ekert, Quantum cryptography. Sci. Am. 267, 50–57 (1992)

    Article  Google Scholar 

  4. J. Cirac, P. Zoller, H. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78(16), 3221–3224 (1997)

    Article  ADS  Google Scholar 

  5. A. Parkins, P. Marte, P. Zoller, O. Carnal, H. Kimble, Quantum-state mapping between multilevel atoms and cavity light fields. Phys. Rev. A 51(2), 1578 (1995)

    Article  ADS  Google Scholar 

  6. A. Imamolu, H. Schmidt, G. Woods, M. Deutsch, Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79(8), 1467–1470 (1997)

    Article  ADS  Google Scholar 

  7. C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Triggered single photons from a quantum dot. Phys. Rev. Lett. 86(8), 1502–1505 (2001)

    Article  ADS  Google Scholar 

  8. T. Schröder, F. Gädeke, M. Banholzer, O. Benson, Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New J. Phys. 13(5), 055017 (2011)

    Article  ADS  Google Scholar 

  9. A. Migdall, D. Branning, S. Castelletto, Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66(5), 053805 (2002)

    Article  ADS  Google Scholar 

  10. T. Pittman, B. Jacobs, J. Franson, Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66(4), 042303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Jeffrey, N. Peters, P. Kwiat, Towards a periodic deterministic source of arbitrary single-photon states. New J. Phys. 6(1), 100 (2004)

    Article  ADS  Google Scholar 

  12. X. Ma, S. Zotter, J. Kofler, T. Jennewein, A. Zeilinger, Experimental generation of single photons via active multiplexing. Phys. Rev. A 83(4), 043814 (2011)

    Article  ADS  Google Scholar 

  13. F. Bussières, J. Slater, J. Jin, N. Godbout, W. Tittel, Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers. Phys. Rev. A 81(5), 052106 (2010)

    Article  ADS  Google Scholar 

  14. Standard photon counting modules AQRH by Excellitas have τ j  = 500 ps @ 808 nm, this timing resolution can be modified to produce τ j  = 250 ps 34, IdQuantique reaches τ j  = 40 ps @ 808 nm with their ID100 model and τ j  = 200 ps @ 1550 nm with their ID200 model. http://www.excelitas.com/downloads/DTS_SPCM-AQRH.pdf. http://www.idquantique.com/images/stories/PDF/id201-single-photon-counter/id201-specs.pdf

  15. A 2 × 1 Lithium Niobate switch with response time below the nanosecond is available from JDSU. Insertion loss, however, is high due to the technology involved. Several manufacturers offer solid-state switches with response times on the order of hundreds of nanoseconds and typical total insertion loss of 0.6 dB. http://www.jdsu.com/ProductLiterature/2x2is_ds_cc_ae_050406.pdf

  16. For example, the time-to-digital converter TDC-GPX from ACAM can measure time differences between two channels with 10 ps resolution. http://www.acam.de/fileadmin/Download/pdf/English/DB_AMGPX_e.pdf

  17. Rise and fall times of 35 ps and 260 ps propagation delays can be obtained with a 10 GHz \(\div4\) clock divider with Current Mode Logic output structure, such as the NB7V33M, from On Semiconductors. http://www.onsemi.com/pub_link/Collateral/NB7V33M-D.PDF

  18. M. Fiorentino, S. Spillane, R. Beausoleil, T. Roberts, P. Battle, M. Munro, Spontaneous parametric down-conversion in periodically poled ktp waveguides and bulk crystals. Opt. Express 15(12), 7479–7488 (2007)

    Article  ADS  Google Scholar 

  19. T. Zhong, F. Wong, T. Roberts, P. Battle, High performance photon-pair source based on a fiber-coupled periodically poled ktiopo4 waveguide. Opt. Express 17(14), 12019–12030 (2009)

    Article  ADS  Google Scholar 

  20. H. Hübel, D. Hamel, A. Fedrizzi, S. Ramelow, K. Resch, T. Jennewein, Direct generation of photon triplets using cascaded photon-pair sources. Nature 466(7306), 601–603 (2010)

    Article  ADS  Google Scholar 

  21. A. Haase, N. Piro, J. Eschner, M. Mitchell, Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction. Opt. Lett. 34(1), 55–57 (2009)

    Article  ADS  Google Scholar 

  22. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, H. Zbinden, Entangling independent photons by time measurement. Nat. Phys. 3(10), 692–695 (2007)

    Article  Google Scholar 

  23. Micron Optics Inc. http://www.micronoptics.com/

  24. L. Mandel, Fluctuations of photon beams: the distribution of the photo-electrons. Proc. Phys. Soc. 74, 233–243 (1959)

    Article  ADS  Google Scholar 

  25. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  26. L. Mazzarella, F. Ticozzi, A.V. Sergienko, G. Vallone, P. Villoresi, Asymmetric architecture for heralded single photon sources (2012). arXiv preprint arXiv:1210.6878

  27. ID Quantique SA. http://www.idquantique.com/scientific-instrumentation/id201-ingaas-apd-single-photon-detector.html

  28. W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, H. Tang, High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)

    Article  ADS  Google Scholar 

  29. I. Marcikic, de H. Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66(6), 062308 (2002)

    Article  ADS  Google Scholar 

  30. V. Scarani, de H. Riedmatten, I. Marcikic, H. Zbinden, N. Gisin, Four-photon correction in two-photon bell experiments. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 32(1), 129–138 (2005)

    Google Scholar 

  31. H. Eisenberg, G. Khoury, G. Durkin, C. Simon, D. Bouwmeester, Quantum entanglement of a large number of photons. Phys. Rev. Lett. 93(19), 193901 (2004)

    Article  ADS  Google Scholar 

  32. S.A. Podoshvedov, J. Noh, K. Kim, Stimulated parametric down conversion and generation of four-path polarization-entangled states. Opt. Commun. 232(1), 357–369 (2004)

    Article  ADS  Google Scholar 

  33. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, H. Weinfurter, Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments. Nat. Photonics 4(3), 170–173 (2010)

    Article  ADS  Google Scholar 

  34. I. Rech, I. Labanca, M. Ghioni, S. Cova, Modified single photon counting modules for optimal timing performance. Rev. Sci. Instrum. 77(3), 033104 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge fruitful discussions with Juan Pablo Paz and Gabriel Larotonda. This work was supported by funds from the ANPCyT and MinDef projects. C.T.S. was funded by a CONICET scolarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Antonio Larotonda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmiegelow, C.T., Larotonda, M.A. Multiplexing photons with a binary division strategy. Appl. Phys. B 116, 447–454 (2014). https://doi.org/10.1007/s00340-013-5718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5718-5

Keywords

Navigation