Abstract
We present a scheme to produce clock-synchronized photons from a single parametric downconversion source with a binary division strategy. The time difference between a clock and detections of the herald photons determines the amount of delay that must be imposed to a photon by actively switching different temporal segments, so that all photons emerge from the output with their wavepackets temporally synchronized with the temporal reference. The operation is performed using a binary division configuration which minimizes the passages through switches. Finally, we extend this scheme to the production of many synchronized photons and find expressions for the optimal amount of correction stages as a function of the pair generation rate and the target coherence time. Our results show that, for the generation of this heralded single-photon per output state at an optimized input photon flux, the output rate of our scheme scales essentially with the reciprocal of the target output photon number. With current technology, rates of up to 104 synchronized pairs per second could be observed with only 7 correction stages.
Similar content being viewed by others
References
P. Grangier, B. Sanders, J. Vuckovic, Focus on single photons on demand. New J. Phys. 6 (2004). doi:10.1088/1367-2630/6/1/E04
E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)
C. Bennett, G. Brassard, A. Ekert, Quantum cryptography. Sci. Am. 267, 50–57 (1992)
J. Cirac, P. Zoller, H. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78(16), 3221–3224 (1997)
A. Parkins, P. Marte, P. Zoller, O. Carnal, H. Kimble, Quantum-state mapping between multilevel atoms and cavity light fields. Phys. Rev. A 51(2), 1578 (1995)
A. Imamolu, H. Schmidt, G. Woods, M. Deutsch, Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79(8), 1467–1470 (1997)
C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Triggered single photons from a quantum dot. Phys. Rev. Lett. 86(8), 1502–1505 (2001)
T. Schröder, F. Gädeke, M. Banholzer, O. Benson, Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New J. Phys. 13(5), 055017 (2011)
A. Migdall, D. Branning, S. Castelletto, Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66(5), 053805 (2002)
T. Pittman, B. Jacobs, J. Franson, Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66(4), 042303 (2002)
E. Jeffrey, N. Peters, P. Kwiat, Towards a periodic deterministic source of arbitrary single-photon states. New J. Phys. 6(1), 100 (2004)
X. Ma, S. Zotter, J. Kofler, T. Jennewein, A. Zeilinger, Experimental generation of single photons via active multiplexing. Phys. Rev. A 83(4), 043814 (2011)
F. Bussières, J. Slater, J. Jin, N. Godbout, W. Tittel, Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers. Phys. Rev. A 81(5), 052106 (2010)
Standard photon counting modules AQRH by Excellitas have τ j = 500 ps @ 808 nm, this timing resolution can be modified to produce τ j = 250 ps 34, IdQuantique reaches τ j = 40 ps @ 808 nm with their ID100 model and τ j = 200 ps @ 1550 nm with their ID200 model. http://www.excelitas.com/downloads/DTS_SPCM-AQRH.pdf. http://www.idquantique.com/images/stories/PDF/id201-single-photon-counter/id201-specs.pdf
A 2 × 1 Lithium Niobate switch with response time below the nanosecond is available from JDSU. Insertion loss, however, is high due to the technology involved. Several manufacturers offer solid-state switches with response times on the order of hundreds of nanoseconds and typical total insertion loss of 0.6 dB. http://www.jdsu.com/ProductLiterature/2x2is_ds_cc_ae_050406.pdf
For example, the time-to-digital converter TDC-GPX from ACAM can measure time differences between two channels with 10 ps resolution. http://www.acam.de/fileadmin/Download/pdf/English/DB_AMGPX_e.pdf
Rise and fall times of 35 ps and 260 ps propagation delays can be obtained with a 10 GHz \(\div4\) clock divider with Current Mode Logic output structure, such as the NB7V33M, from On Semiconductors. http://www.onsemi.com/pub_link/Collateral/NB7V33M-D.PDF
M. Fiorentino, S. Spillane, R. Beausoleil, T. Roberts, P. Battle, M. Munro, Spontaneous parametric down-conversion in periodically poled ktp waveguides and bulk crystals. Opt. Express 15(12), 7479–7488 (2007)
T. Zhong, F. Wong, T. Roberts, P. Battle, High performance photon-pair source based on a fiber-coupled periodically poled ktiopo4 waveguide. Opt. Express 17(14), 12019–12030 (2009)
H. Hübel, D. Hamel, A. Fedrizzi, S. Ramelow, K. Resch, T. Jennewein, Direct generation of photon triplets using cascaded photon-pair sources. Nature 466(7306), 601–603 (2010)
A. Haase, N. Piro, J. Eschner, M. Mitchell, Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction. Opt. Lett. 34(1), 55–57 (2009)
M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, H. Zbinden, Entangling independent photons by time measurement. Nat. Phys. 3(10), 692–695 (2007)
Micron Optics Inc. http://www.micronoptics.com/
L. Mandel, Fluctuations of photon beams: the distribution of the photo-electrons. Proc. Phys. Soc. 74, 233–243 (1959)
L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)
L. Mazzarella, F. Ticozzi, A.V. Sergienko, G. Vallone, P. Villoresi, Asymmetric architecture for heralded single photon sources (2012). arXiv preprint arXiv:1210.6878
ID Quantique SA. http://www.idquantique.com/scientific-instrumentation/id201-ingaas-apd-single-photon-detector.html
W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, H. Tang, High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)
I. Marcikic, de H. Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66(6), 062308 (2002)
V. Scarani, de H. Riedmatten, I. Marcikic, H. Zbinden, N. Gisin, Four-photon correction in two-photon bell experiments. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 32(1), 129–138 (2005)
H. Eisenberg, G. Khoury, G. Durkin, C. Simon, D. Bouwmeester, Quantum entanglement of a large number of photons. Phys. Rev. Lett. 93(19), 193901 (2004)
S.A. Podoshvedov, J. Noh, K. Kim, Stimulated parametric down conversion and generation of four-path polarization-entangled states. Opt. Commun. 232(1), 357–369 (2004)
R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, H. Weinfurter, Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments. Nat. Photonics 4(3), 170–173 (2010)
I. Rech, I. Labanca, M. Ghioni, S. Cova, Modified single photon counting modules for optimal timing performance. Rev. Sci. Instrum. 77(3), 033104 (2006)
Acknowledgments
We acknowledge fruitful discussions with Juan Pablo Paz and Gabriel Larotonda. This work was supported by funds from the ANPCyT and MinDef projects. C.T.S. was funded by a CONICET scolarship.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmiegelow, C.T., Larotonda, M.A. Multiplexing photons with a binary division strategy. Appl. Phys. B 116, 447–454 (2014). https://doi.org/10.1007/s00340-013-5718-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-013-5718-5