Applied Physics B

, Volume 114, Issue 1–2, pp 3–10 | Cite as

Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap

  • D. P. L. Aude CraikEmail author
  • N. M. Linke
  • T. P. Harty
  • C. J. Ballance
  • D. M. Lucas
  • A. M. Steane
  • D. T. C. Allcock


We propose a surface ion trap design incorporating microwave control electrodes for near-field single-qubit control. The electrodes are arranged so as to provide arbitrary frequency, amplitude and polarization control of the microwave field in one trap zone, whilst a similar set of electrodes is used to null the residual microwave field in a neighbouring zone. The geometry is chosen to reduce the residual field to the 0.5 % level without nulling fields; with nulling, the crosstalk may be kept close to the 0.01 % level for realistic microwave amplitude and phase drift. Using standard photolithography and electroplating techniques, we have fabricated a proof-of-principle electrode array with two trapping zones. We discuss requirements for the microwave drive system and prospects for scalability to a large 2-D trap array.


Ground Plane Rabi Frequency Microwave Field Light Shift Control Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank D. N. Stacey, H. A. Janacek, M. A. Sepiol, D. Leibfried, J. A. Sherman and D. H. Slichter for helpful comments on the manuscript. Thanks to J. Brown and P. Pattinson for the use of cleanroom facilities. This work was supported by an EPSRC Science and Innovation Award.


  1. 1.
    T.P. Harty, et al. (in preparation) (2013)Google Scholar
  2. 2.
    C. Langer, R. Ozeri, J.D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R.B. Blakestad, J. Britton, D.B. Hume, W.M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P.O. Schmidt, D.J. Wineland, Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    K.R. Brown, A.C. Wilson, Y. Colombe, C. Ospelkaus, A.M. Meier, E. Knill, D. Leibfried, D.J. Wineland, Single-qubit-gate error below 10−4 in a trapped ion. Phys. Rev. A 84, 030303 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    C. Ospelkaus, U. Warring, Y. Colombe, K.R. Brown, J.M. Amini, D. Leibfried, D.J. Wineland, Microwave quantum logic gates for trapped ions. Nature 476, 181 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    C.M. Shappert, J.T. Merrill, K.R. Brown, J.M. Amini, C. Volin, S.C. Doret, H. Hayden, C.-S. Pai, K.R. Brown, A.W. Harter, Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation. New J. Phys. 15(8), 083053 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    C. Ospelkaus, C.E. Langer, J.M. Amini, K.R. Brown, D. Leibfried, D.J. Wineland, Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101, 090502 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R. Ozeri, W.M. Itano, R.B. Blakestad, J. Britton, J. Chiaverini, J.D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J.H. Wesenberg, D.J. Wineland, Errors in trapped-ion quantum gates due to spontaneous photon scattering. Phys. Rev. A 75, 042329 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    E.W. Streed, B.G. Norton, A. Jechow, T.J. Weinhold, D. Kielpinski, Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106, 010502 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    G.R. Brady, A.R. Ellis, D.L. Moehring, D. Stick, C. Highstrete, K.M. Fortier, M.G. Blain, R.A. Haltli, A.A. Cruz-Cabrera, R.D. Briggs, J.R. Wendt, T.R. Carter, S. Samora, S.A. Kemme, Integration of fluorescence collection optics with a microfabricated surface electrode ion trap. Appl. Phys. B Lasers Opt. 103(4), 801 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    U. Warring, C. Ospelkaus, Y. Colombe, K.R. Brown, J.M. Amini, M. Carsjens, D. Leibfried, D.J. Wineland, Techniques for microwave near-field quantum control of trapped ions. Phys. Rev. A 87, 013437 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    U. Warring, C. Ospelkaus, Y. Colombe, R. Jördens, D. Leibfried, D.J. Wineland, Individual-ion addressing with microwave field gradients. Phys. Rev. Lett. 110, 173002 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    P.J. Kunert, D. Georgen, L. Bogunia, T.M. Baig, M.A. Baggash, M. Johanning, C. Wunderlich, A planar ion trap chip with integrated structures for a tailorable magnetic field gradient. ArXiv e-prints (2013)Google Scholar
  13. 13.
    M. Johanning, A. Braun, N. Timoney, V. Elman, W. Neuhauser, C. Wunderlich, Individual addressing of trapped ions and coupling of motional and spin states using rf radiation. Phys. Rev. Lett. 102, 073004 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    S.X. Wang, J. Labaziewicz, Y. Ge, R. Shewmon, I.L. Chuang, Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap. Appl. Phys. Lett. 94, 094103 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender, D.J. Wineland, Toward scalable ion traps for quantum information processing. N. J. Phys. 12, 033031 (2010)CrossRefGoogle Scholar
  16. 16.
    R.B. Blakestad, Transport of Trapped-Ion Qubits within a Scalable Quantum Processor. PhD thesis, University of Colorado (2010)Google Scholar
  17. 17.
    D.T.C. Allcock, J.A. Sherman, D.N. Stacey, A.H. Burrell, M.J. Curtis, G. Imreh, N.M. Linke, D.J. Szwer, S.C. Webster, A.M. Steane, D.M. Lucas, Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect. N. J. Phys., 12, 053026 (2010)CrossRefGoogle Scholar
  18. 18.
    D.M. Lucas, B.C. Keitch, J.P. Home, G. Imreh, M.J. McDonnell, D.N. Stacey, D.J. Szwer, A.M. Steane, A long-lived memory qubit on a low-decoherence quantum bus. arXiv:0710.4421v1 [quant-ph] (2007)Google Scholar
  19. 19.
    D.T.C. Allcock, T.P. Harty, C.J. Ballance, B.C. Keitch, N.M. Linke, D.N. Stacey, D.M. Lucas, A microfabricated ion trap with integrated microwave circuitry. Appl. Phys. Lett. 102(4), 044103 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J. Chiaverini, R.B. Blakestad, J. Britton, J.D. Jost, C. Langer, D. Leibfried, R. Ozeri, D.J. Wineland, Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5, 419 (2005)zbMATHMathSciNetGoogle Scholar
  21. 21.
    M.G. House, Analytic model for electrostatic fields in surface-electrode ion traps. Phys. Rev. A 78, 033402 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    J.H. Wesenberg, Electrostatics of surface-electrode ion traps. Phys. Rev. A 78, 063410 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    D. Stick, Fabrication and Characterization of Semiconductor Ion Traps for Quantum Information Processing. PhD thesis, University of Michigan (2007)Google Scholar
  24. 24.
    D.T.C. Allcock, T.P. Harty, H.A. Janacek, N.M. Linke, C.J. Ballance, A.M. Steane, D.M. Lucas, R.L. Jarecki Jr., S.D. Habermehl, M.G. Blain, D. Stick, D.L. Moehring, Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107(4), 913–919 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    K.R. Brown, A.W. Harrow, I.L. Chuang, Arbitrarily accurate composite pulse sequences. Phys. Rev. A 70, 052318 (2004)Google Scholar
  26. 26.
    S.C. Doret, J.M. Amini, K. Wright, C. Volin, T. Killian, A. Ozakin, D. Denison, H. Hayden, C.-S. Pai, R.E. Slusher, A.W. Harter, Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation. N. J. Phys. 14(7), 073012 (2012)CrossRefGoogle Scholar
  27. 27.
    F. Benito, B. Tabakov, M.G. Blain, R. Cook, A. A. Cruz-Cabrera, M. Descour, A.R. Ellis, L. Fang, K.M. Fortier, W.L. Gordy, R.A. Haltli, C. Highstrete, J.J. Hudgens, S.A. Kemme, T.L. Lindgren, D.L. Moehring, C.Y. Nakakura, M.E. Smith, J.E. Stevens, D.L. Stick, C.P. Tigges, in Microfabricated Surface Electrode ion Traps. Workshop on Ion Trap Technology, Boulder (2011)Google Scholar
  28. 28.
    D. Choudhury, 3D Integration Technologies for Emerging Microsystems. Microwave Symposium Digest (MTT). IEEE MTT-S International, pp. 1–4 (2010)Google Scholar
  29. 29.
    A.H. Burrell, D.J. Szwer, S.C. Webster, D.M. Lucas, Scalable simultaneous multi-qubit readout with 99.99 % single-shot fidelity. Phys. Rev. A 81, 040302 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    A.M. Eltony, S.X. Wang, G.M. Akselrod, P.F. Herskind, I.L. Chuang, Transparent ion trap with integrated photodetector. Appl. Phys. Lett. 102(5), 054106 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    A.P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, D.J. Wineland, Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105, 023001 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • D. P. L. Aude Craik
    • 1
    Email author
  • N. M. Linke
    • 1
  • T. P. Harty
    • 1
  • C. J. Ballance
    • 1
  • D. M. Lucas
    • 1
  • A. M. Steane
    • 1
  • D. T. C. Allcock
    • 1
    • 2
  1. 1.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUK
  2. 2.National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations