Skip to main content
Log in

Surface plasmon enhanced giant Faraday effect in graphene

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have theoretically investigated the giant Faraday rotation effect in graphene coupled to metal nanoparticles (MNPs). MNP-induced Faraday rotation effect (MIFRE) results in a giant Faraday rotation angle in high-frequency region where usually no significant Faraday rotation would occur in graphene. Another advantage of MIFRE is the enhanced amplification of the rotating light beam. Furthermore, the MIFRE can be tuned by changing the MNP–graphene distance. The high efficiency and tunability of MIFRE in graphene predict its potential applications in novel graphene-based optical modulators and switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, S. Savasta, Phys. Rev. Lett. 105, 263601 (2010)

    Article  ADS  Google Scholar 

  2. R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, J. Aizpurua, Phys. Rev. B 83, 235406 (2011)

    Article  ADS  Google Scholar 

  3. I. Mukherjee, G. Hajisalem, R. Gordon. Opt. Express 19, 22462 (2011)

    Article  ADS  Google Scholar 

  4. J.Y. Lee, P. Peumans. Opt. Express 18, 10078 (2010)

    Article  ADS  Google Scholar 

  5. H.Y. Lin, C.H. Huang, C.H. Chang, Y.C. Lan, H.C. Chui. Opt. Express 18, 165 (2010)

    Article  ADS  Google Scholar 

  6. R.D. Artuso, G.W. Bryant. Phys. Rev. B 87, 125423 (2013)

    Article  ADS  Google Scholar 

  7. S.G. Kosionis, A.F. Terzis, S.M. Sadeghi, E. Paspalakis. J. Phys. Condens. Matter 25, 045304 (2013)

    Article  ADS  Google Scholar 

  8. W.J. Hong, H. Bai, Y.X. Xu, Z.Y. Yao, Z.Z. Gu, G.Q. Shi. J. Phys. Chem. C 114, 1822 (2010)

    Article  Google Scholar 

  9. Y. Wang, S.J. Zhen, Y. Zhang, Y.F. Li, C.Z. Huang. J. Phys. Chem. C 115, 12815 (2011)

    Article  Google Scholar 

  10. Y. Li, X.B. Fan, J.J. Qi, J.Y. Ji, S.L. Wang, G.L. Zhang, F.B. Zhang. Nano. Res. 3, 429 (2010)

    Article  Google Scholar 

  11. A.M. Zaniewski, M. Schriver, J.G. Lee, M.F. Crommie, A. Zettl. App. Phys. Lett. 102, 023108 (2013)

    Article  ADS  Google Scholar 

  12. P.S. Pershan. J. Appl. Phys. 38, 1482 (1967)

    Article  ADS  Google Scholar 

  13. S.A. Wolf. IBM J. Res. Dev. 50, 101 (2006)

    Article  Google Scholar 

  14. I. Crassee, J. Levallois, A.L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D.V. d. Marel, A.B. Kuzmenko. Nature Physics 7, 48 (2011)

    Article  Google Scholar 

  15. I. Fialkovsky, D.V. Vassilevich. Eur. Phys. J. B 85, 384 (2012)

    Article  ADS  Google Scholar 

  16. A. Fallahi, J. Perruisseau-Carrier. App. Phys. Lett. 101, 231605 (2012)

    Article  ADS  Google Scholar 

  17. N. Ubrig, I. Crassee, J. Levallois, I. O. Nedoliuk, F. Fromm, M. Kaiser, T. Seyller, A. B. Kuzmenko, http://arxiv.org/abs/1303.1634 (2013)

  18. A. Ferreira, J. Viana-Gomes, Y.V. Bludov, V. Pereira, N.M.R. Peres, A.H. Castro Neto. Phys. Rev. B 84, 235410 (2011)

    Article  ADS  Google Scholar 

  19. W. Zhang, A.O. Govorov, G.W. Bryant. Phys. Rev. Lett. 97, 146804 (2006)

    Article  ADS  Google Scholar 

  20. J.Y. Yan, W. Zhang, S. Duan, A.O. Govorov. Phys. Rev. B 77, 165301 (2008)

    Article  ADS  Google Scholar 

  21. N.M.R. Peres. Rev. Mod. Phys. 82, 2673 (2010)

    Article  ADS  Google Scholar 

  22. J.W. McClure. Phys. Rev. 104, 666 (1956)

    Article  ADS  Google Scholar 

  23. R.F. O’Connell, G. Wallace. Phys. Rev. B 26, 2231 (1982)

    Article  ADS  Google Scholar 

  24. N.M.R. Peres, F. Guinea, A.H. Castro Neto. Phys. Rev. B 75, 125411 (2006)

    Article  ADS  Google Scholar 

  25. T. Ando, Y. Zheng, H. Suzuura. J. Phys. Soc. Jnp. 71, 1318 (2002)

    Article  ADS  Google Scholar 

  26. V.P. Gusynin, S.G. Sharapov. Phys. Rev. B 73, 245411 (2006)

    Article  ADS  Google Scholar 

  27. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte. Phys. Rev. Lett. 96, 256802 (2006)

    Article  ADS  Google Scholar 

  28. L.A. Falkovsky, S.S. Pershoguba. Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  29. L.A. Falkovsky, A.A. Varlamov. Eur. Phys. J. B 56, 281 (2007)

    Article  ADS  Google Scholar 

  30. T. Stauber, N.M.R. Peres, A.K. Geim. Phys. Rev. B 78, 085432 (2008)

    Article  ADS  Google Scholar 

  31. N.M.R. Peres, T. Stauber. Int. J. Mod. Phys. B 22, 2529 (2008)

    Article  MATH  ADS  Google Scholar 

  32. X.H. Yao, A. Belyanin. Phys. Rev. Lett. 108, 255503 (2012)

    Article  ADS  Google Scholar 

  33. R.D. Artuso, G.W. Bryant. Nano. Lett. 8, 2106 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 10974133 and 11274230) and the Ministry of Education Program for PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Di Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhu, KD. Surface plasmon enhanced giant Faraday effect in graphene. Appl. Phys. B 116, 437–445 (2014). https://doi.org/10.1007/s00340-013-5715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5715-8

Keywords

Navigation