Applied Physics B

, Volume 114, Issue 1–2, pp 37–44 | Cite as

Entangling quantum gate in trapped ions via Rydberg blockade

  • Weibin LiEmail author
  • Igor Lesanovsky


We present a theoretical analysis of the implementation of an entangling quantum gate between two trapped Ca+ ions which is based on the dipolar interaction among ionic Rydberg states. In trapped ions, the Rydberg excitation dynamics is usually strongly affected by mechanical forces due to the strong couplings between electronic and vibrational degrees of freedom in inhomogeneous electric fields. We demonstrate that this harmful effect can be overcome using dressed states that emerge from the microwave coupling of nearby Rydberg states. At the same time. these dressed states exhibit long-range dipolar interactions which we use to implement a controlled adiabatic phase gate. Our study highlights a route toward a trapped ion quantum processor in which quantum gates are realized independently of the vibrational modes.


Phonon Mode Rabi Frequency Rydberg State Phase Gate Control Phase Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Discussions with all members of the R-ION consortium are kindly acknowledged. We thank D. Viscor, C. Ates and S. Genway for careful reading of the manuscript. This work is funded through EPSRC and the ERA-NET CHIST-ERA (R-ION consortium). WL is supported through the Nottingham Research Fellowship by the University of Nottingham.


  1. 1.
    D.P. DiVincenzo, Fortschritte der Physik 48, 771 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    F. Schmidt-Kaler, H. Haffner, M. Riebe, S. Gulde, G.P.T. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Nature 422, 408 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, D.J. Wineland, Nature 422, 412 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Nat. Phys. 4, 463 (2008)CrossRefGoogle Scholar
  5. 5.
    K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leibfried, D.J. Wineland, Nature 471, 196 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M. Harlander, R. Lechner, M. Brownnutt, R. Blatt, W. Hänsel, Nature 471, 200 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    A. Sørensen, K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    G.J. Milburn, S. Schneider, D.F.V. James, Fortschr. Phys. 48, 801 (2000)CrossRefGoogle Scholar
  10. 10.
    D. Porras, J.I. Cirac, Phys. Rev. Lett. 92, 207901 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    P.J. Lee, K.-A. Brickman, L. Deslauriers, P.C. Haljan, L.-M. Duan, C. Monroe, J. Opt. B 7, S371 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    T.F. Gallagher, Rep. Prog. Phys. 51, 143 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Lukin, Phys. Rev. Lett. 87, 037901 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    D. Comparat, P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Y.O. Dudin, L. Li, F. Bariani, A. Kuzmich, Nat. Phys. 8, 790 (2012)CrossRefGoogle Scholar
  17. 17.
    D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Côté, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, A. Browaeys, Phys. Rev. Lett. 104, 010502 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    L. Isenhower, E. Urban, X.L. Zhang, A.T. Gill, T. Henage, T.A. Johnson, T.G. Walker, M. Saffman, Phys. Rev. Lett. 104, 010503 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M. Müller, L. Liang, I. Lesanovsky, P. Zoller, New J. Phys. 10, 093009 (2008)CrossRefGoogle Scholar
  21. 21.
    W.R. Anderson, J.R. Veale, T.F. Gallagher, Phys. Rev. Lett. 80, 249 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V.M. Akulin, P. Pillet, Phys. Rev. Lett. 80, 253 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    W. Li, I. Lesanovsky, Phys. Rev. Lett. 108, 023003 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, I. Lesanovsky, New J. Phys. 13, 075014 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R. Mukherjee, J. Millen, R. Nath, M.P.A. Jones, T. Pohl, J. Phys. B 44, 184010 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    D. James, Appl. Phys. B Lasers Opt. 66, 181 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    D. Kolbe, M. Scheid, J. Walz, Phys. Rev. Lett. 109, 063901 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    W. Li, A.W. Glaetzle, R. Nath, I. Lesanovsky, Phys. Rev. A 87, 052304 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    I. Lesanovsky, P. Schmelcher, Phys. Rev. Lett. 95, 053001 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    T.E. Sharp, H.M. Rosenstock, J. Chem. Phys. 41, 3453 (1964)ADSCrossRefGoogle Scholar
  32. 32.
    J.J. García-Ripoll, P. Zoller, J.I. Cirac, Phys. Rev. Lett. 91, 157901 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    L.-M. Duan, Phys. Rev. Lett. 93, 100502 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    J.J. García-Ripoll, P. Zoller, J.I. Cirac, Phys. Rev. A 71, 062309 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    L.A. Jones, J.D. Carter, J.D.D. Martin, Phys. Rev. A 87, 023423 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    J.F. Poyatos, J.I. Cirac, R. Blatt, P. Zoller, Phys. Rev. A 54, 1532 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Physics and AstronomyThe University of NottinghamNottinghamUK
  2. 2.School of PhysicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations