Skip to main content
Log in

The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock

  • Published:
Applied Physics B Aims and scope Submit manuscript

An Erratum to this article was published on 30 July 2014

Abstract

The systematic shifts of the transition frequencies in the molecular hydrogen ions are of relevance to ultra-high-resolution radio-frequency, microwave and optical spectroscopy of these systems, performed in ion traps. We develop the ab initio description of the interaction of the electric quadrupole moment of this class of molecules with the static electric field gradients present in ion traps. In good approximation, it is described in terms of an effective perturbation Hamiltonian. An approximate treatment is then performed in the Born–Oppenheimer approximation. We give an expression of the electric quadrupole coupling parameter valid for all hydrogen molecular ion species and evaluate it for a large number of states of H +2 , HD+, and D +2 . The systematic shifts can be evaluated as simple expectation values of the perturbation Hamiltonian. Results on radio-frequency, one-photon electric dipole (E1), and two-photon E1 transitions between hyperfine states in HD+ are reported. For two-photon E1 transitions between rotationless states, the shifts vanish. For a large subset of rovibrational one-photon transitions, the absolute values of the quadrupole shifts range from 0.3 to 10 Hz for an electric field gradient of 108 V/m2. We point out an experimental procedure for determining the quadrupole shift which will allow reducing its contribution to the uncertainty of unperturbed rovibrational transition frequencies to the 1 × 10−15 fractional level and, for selected transitions, even below it. The combined contributions of black-body radiation, Zeeman, Stark and quadrupole effects are considered for a large set of transitions, and it is estimated that the total transition frequency uncertainty of selected transitions can be reduced below the 1 × 10−15 level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Values of the hyperfine Hamiltonian coefficients for v = 5 and L = 5 levels were computed by V. Korobov and A. Bekbaev (private communication). The rotational g-factors for these levels were extrapolated from those of lower levels.

  2. In addition to the neglect of excited electronic states, the calculations in Ref. [15] were performed taking into account only intermediate states with 0 ≤ v ≤ 4. Therefore, the polarizabilities of the v = 4, L = 2 level given in that paper deviate from the “correct” (within the chosen approximation) values by up to 1 at.u.

References

  1. J.C.J. Koelemeij, B. Roth, A. Wicht, I. Ernsting, S. Schiller, Phys. Rev. Lett. 98, 173002 (2007)

    Article  ADS  Google Scholar 

  2. U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, S. Schiller, Phys. Rev. Lett. 108, 183003 (2012)

    Article  ADS  Google Scholar 

  3. V.I. Korobov, Z.-X. Zhong, Phys. Rev. A 86, 044501 (2012)

    Article  ADS  Google Scholar 

  4. J.-P. Karr, A. Douillet, L. Hilico, Appl. Phys. B 107, 1043–1052 (2012). doi:10.1007/s00340-011-4757-z

    Article  ADS  Google Scholar 

  5. A.K. Bekbaev, V.I. Korobov, M. Dineykhan, Phys. Rev. A 83, 044501 (2011). doi:10.1103/PhysRevA.83.044501

  6. U. Fröhlich, B. Roth, P. Antonini, C. Lämmerzahl, A. Wicht, S. Schiller, in Seminar on Astrophysics, Clocks and Fundamental Constants, eds. by E. Peik, S. Karshenboim. Lecture Notes in Physics, vol. 648 (Springer, Berlin, 2004), p. 297

  7. S. Schiller, V.I. Korobov, Phys. Rev. A 71, 032505 (2005)

    Article  ADS  Google Scholar 

  8. M. Kajita, Phys. Rev. A 77, 012511 (2008)

    Article  ADS  Google Scholar 

  9. D. Bakalov, V.I. Korobov, S. Schiller, Phys. Rev. A 82, 055401 (2010)

    Article  ADS  Google Scholar 

  10. D. Bakalov, V.I. Korobov, S. Schiller, J. Phys. B At. Mol. Opt. Phys. 44, 025003 (2011)

    Google Scholar 

  11. D. Bakalov, V.I. Korobov, S. Schiller, J. Phys. B At. Mol. Opt. Phys. 45, 049501 (2012)

    Google Scholar 

  12. R.E. Moss, L. Valenzano, Mol. Phys. 100, 1527 (2002)

    Article  ADS  Google Scholar 

  13. J.-P. Karr, S. Kilic, L. Hilico, J. Phys. B At. Mol. Opt. Phys. 38, 853 (2005)

    Article  ADS  Google Scholar 

  14. J.C.J. Koelemeij, Phys. Chem. Chem. Phys. 13, 18844 (2011)

    Article  Google Scholar 

  15. D. Bakalov, S. Schiller, Hyperfine Interact. 210, 25 (2012)

    Article  ADS  Google Scholar 

  16. D.R. Bates, G. Poots, Proc. Phys. Soc. (Lond) Sec. A 66, 784 (1953)

    Article  ADS  MATH  Google Scholar 

  17. J.M. Peek, A. Hashemi-Attar, C.L. Beckel, J. Chem. Phys. 71, 5382 (1979)

    Article  ADS  Google Scholar 

  18. A.G. Posen, A. Dalgarno, J.M. Peek, At. Data Nucl. Data Tables 28, 265–277 (1983)

    Article  ADS  Google Scholar 

  19. H.O. Pilón, D. Baye, J. Phys. B: At. Mol. Opt. Phys. 45, 065101 (2012). doi:10.1088/0953-4075/45/6/065101

    Article  ADS  Google Scholar 

  20. D.M. Bishop, B. Lam, Chem. Phys. Lett. 134, 283–287 (1987)

    Article  ADS  Google Scholar 

  21. D.M. Bishop, B. Lam, Mol. Phys. 65, 679–688 (1988)

    Article  ADS  Google Scholar 

  22. A.K. Bhatia, R.J. Drachman, Phys. Rev. A 61, 032503 (2000)

    Article  ADS  Google Scholar 

  23. H.O. Pilón, Quadrupole transitions in the bound rotational–vibrational spectrum of the deuterium molecular ion. arXiv:1302.5234v2

  24. D. Bakalov, V.I. Korobov, Phys. Rev. A 57, 1662 (1998)

    Article  ADS  Google Scholar 

  25. V.I. Korobov, D. Bakalov, Phys. Rev. Lett. 79, 3379 (1997)

    Article  ADS  Google Scholar 

  26. A.R. Edmonds, Angular Momentum in Quantum, Mechanics. (Princeton University Press, Princeton, 1957)

    MATH  Google Scholar 

  27. V.I. Korobov, D. Bakalov, H.J. Monkhorst, Phys. Rev. A 59, R919 (1999)

    Article  ADS  Google Scholar 

  28. D. Bakalov, V.I. Korobov, S. Schiller, Phys. Rev. Lett. 97, 243001 (2006)

    Article  ADS  Google Scholar 

  29. V.I. Korobov, Phys. Rev. A 77, 022509 (2008)

    Article  ADS  Google Scholar 

  30. H. Wind, J. Chem. Phys. 42, 2371 (1965)

    Article  ADS  Google Scholar 

  31. V.I. Korobov, Phys. Rev. A 74, 052506 (2006)

    Article  ADS  Google Scholar 

  32. H.J. Montgomery, Chem. Phys. Lett. 50, 455–458 (1977). doi:10.1016/0009-2614(77)80365-5

    Article  ADS  Google Scholar 

  33. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, E. Peik, Phys. Rev. Lett. 108, 090801 (2012)

    Article  ADS  Google Scholar 

  34. J. Shen, A. Borodin, M. Hansen, S. Schiller, Phys. Rev. A 85, 032519 (2012)

    Article  ADS  Google Scholar 

  35. W.M. Itano, J. Res. Natl. Inst. Stand. Technol. 105, 829–837 (2000)

    Article  Google Scholar 

  36. W.H. Oskay, S.A. Diddams, E.A. Donley, T.M. Fortier, T.P. Heavner, L. Hollberg, W.M. Itano, S.R. Jefferts, M.J. Delaney, K. Kim, F. Levi, T.E. Parker, J.C. Bergquist, Phys. Rev. Lett. 97, 020801 (2006). doi:10.1103/Phys.Rev.Lett.97.020801.

    Article  ADS  Google Scholar 

  37. V.I. Korobov, A. Bekbaev, S. Schiller, et al., in preparation.

  38. D. Bakalov, K. Bakalova, V.I. Korobov, H.J. Monkhorst, I. Shimamura, Phys. Rev. A 57, 3370 (1998)

    Article  ADS  Google Scholar 

  39. P.E. Knowles, G.A. Beer, G.R. Mason et al., Phys. Rev. A 56, 1970 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Grant SCHI 431/19-1 of the Deutsche Forschungsgemeinschaft. We are grateful to V.I. Korobov and A. Bekbaev for making available to us their results of the polarizabilities and of the hyperfine Hamiltonian coefficients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakalov, D., Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 114, 213–230 (2014). https://doi.org/10.1007/s00340-013-5703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5703-z

Navigation