Skip to main content
Log in

Experimental study of the E(mλ)/E(m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The optical properties of soot have been studied for many years with a particular attention focused on refractive index. In the present study, the two-excitation wavelength laser-induced incandescence technique has been applied to determine the ratio of the soot absorption function as a function of the wavelength. The advantage of this technique is to provide the determination of the E(m) ratio using a non-intrusive laser-based method without being disturbed by scattering. Measurements have been carried out in a methane premixed flat flame and in a diesel turbulent spray one. Four pairs of wavelength have been used to evaluate the spectral behavior of E(m) ratios from ultraviolet (UV) to near infrared (NIR). The two-excitation wavelength LII method implies heating soot the same way using two different laser excitations. Particular operating conditions must be selected to insure the equality of the LII signals, such an equality being necessary to derive the E(m) ratio. A laser excitation at 1064 nm has been chosen as a reference, and the obtained results have been compared with those issued from the use of UV and visible wavelengths of 266, 355, 532 and 660 nm. Results show a significant decrease of the E(m) ratio from UV to visible while it tends to become constant from 532 nm to NIR. The use of different experimental conditions allows to analyze the dependence of the E(m) ratios with the height above the burner, the fuel type and the soot temperature. No significant influence of these parameters has been pointed out on the relative E(m) values determined in the flame conditions investigated here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

d p  (m):

Soot primary particles diameter

E(mλ):

Soot absorption function

F λ (J m−2):

Laser fluence

E λ (J):

Total energy of the laser pulse radiation

f v :

Soot volume fraction

H abs (W):

Absorbed power of a single soot particle

m = n − ik :

Optical index

Q abs :

Soot absorption efficiency

q λ (W m−2):

Laser irradiance

S laser (m2):

Laser pulse cross-sectional area

T (K):

Particle temperature

λ (m):

Wavelength

δ t (s):

Laser pulse duration

Diester:

Diesel/rapeseed methyl ester (RME) mixture

HAB:

Height above the burner

LIF:

Laser-induced fluorescence

LII:

Laser-induced incandescence

PAH:

Polycyclic aromatic hydrocarbon

TEM:

Transmission electron microscopy

TiRe-LII:

Time-resolved LII

References

  1. H. Horvath, Atmos. Environ. 27, 293–317 (1993)

    Article  ADS  Google Scholar 

  2. T.T. Charalampopoulos, J.D. Felske, Combust. Flame 68(3), 283–294 (1987)

    Article  Google Scholar 

  3. T.T. Charalampopoulos, H. Chang, B. Stagg, Fuel 68(9), 1173–1179 (1989)

    Article  Google Scholar 

  4. S.S. Krishnan, K.-C. Lin, G.M. Faeth, ASME J. Heat Transf. 122(3), 517–524 (2000)

    Article  Google Scholar 

  5. S.S. Krishnan, K.-C. Lin, G.M. Faeth, ASME J. Heat Transf. 123(2), 331–339 (2001)

    Article  Google Scholar 

  6. W.H. Dalzell, A.P. Sarofim, ASME J. Heat Transf. 91(1), 100–104 (1969)

    Article  Google Scholar 

  7. T.L. Henriksen, T.A. Ring, D. Call, E.G. Eddings, A.F. Sarofim, 5th U.S. Combustion Meeting, March 25–28th (2007)

  8. J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Appl. Phys. B 104(2), 253–271 (2010)

    Article  ADS  Google Scholar 

  9. C.M. Sorensen, Aerosol Sci. Technol. 35, 648–687 (2001)

    Article  Google Scholar 

  10. T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40(1), 27–67 (2006)

    Article  Google Scholar 

  11. D.R. Snelling, G.J. Smallwood, O.L. Glder, AIAA J. 40, 1789–1795 (2002)

    Article  ADS  Google Scholar 

  12. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 657–669 (2009)

    Article  ADS  Google Scholar 

  13. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79–92 (2006)

    Article  Google Scholar 

  14. J. Reimann, S.A. Kuhlmann, S. Will, Appl. Phys. B 96, 583–592 (2009)

    Article  ADS  Google Scholar 

  15. F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623–636 (2009)

    Article  ADS  Google Scholar 

  16. H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond. Ser. A 430, 577–591 (1990)

    Article  ADS  Google Scholar 

  17. S. Lee, C. Tien, Int. Symp. Combust. 18(1), 1159–1166 (1981)

    Article  Google Scholar 

  18. Z.G. Habib, P. Vervisch, Combust. Sci. Technol. 59, 261–274 (1988)

    Article  Google Scholar 

  19. T.H. Fletch, J. Ma, J.R. Rigby, A.L. Brown, B.W. Webb, Prog. Energy Combust. Sci. 23, 283–301 (1997)

    Article  Google Scholar 

  20. H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.E. Bengtsson, Proc. Combust. Inst. 33(1), 641–648 (2011)

    Article  Google Scholar 

  21. T.L. Farias, M.G. Carvalho, Ü.Ö. Köylü, G.M. Faeth, J. Heat Transf. 117, 152–159 (1995)

    Article  Google Scholar 

  22. CM. Sorensen, J. Cai, N. Lu, Langmuir 8, 2064–2069 (1992)

    Article  Google Scholar 

  23. S. Manickavasagam, M.P. Meng, Appl. Opt. 36, 1337–1351 (1997)

    Article  ADS  Google Scholar 

  24. E. Therssen, Y. Bouvier, C. S-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 417–427 (2007)

    Article  ADS  Google Scholar 

  25. R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, P. Desgroux, Proc. Combust. Inst. 32, 737–744 (2009)

    Article  Google Scholar 

  26. R. Lemaire, E. Therssen, P. Desgroux, Fuel 89, 3952–3959 (2010)

    Article  Google Scholar 

  27. G. Cléon, T. Amodeo, A. Faccinnetto, P. Desgroux, Appl. Phys. B 104, 297–305 (2011)

    Article  ADS  Google Scholar 

  28. R. Lemaire, S. Bejaoui, E. Therssen, Fuel 107, 147–161 (2013)

    Article  Google Scholar 

  29. H.A. Michelsen, J. Chem. Phys. 118, 7012–7045 (2003)

    Article  ADS  Google Scholar 

  30. R. Lemaire, M. Maugendre, T. Schuller, E. Therssen, J. Yon, Rev. Sci. Inst. 80, 105105–105113 (2009)

    Article  ADS  Google Scholar 

  31. U. Koylu, G. Faeth, J.Heat Transf. 118(2), 415–421 (1996)

    Article  Google Scholar 

  32. H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48(8), 2175–2191 (2010)

    Article  Google Scholar 

  33. H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 50(2), 740 (2012)

    Article  Google Scholar 

  34. A. D’Anna, Proc. Combust. Inst. 32, 593–613 (2009)

    Article  Google Scholar 

  35. S.De. Iuliis, S. Maffi, F. Cignoli, G. Zizak, Appl. Phys. B 102(4), 891–903 (2010)

    Google Scholar 

  36. F. Migliorini, S.De. Iuliis, S. Maffi, F. Cignoli, G. Zizak, Appl. Phys. B 96, 637–643 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Quality Program of IRENI (Institut de Recherche en ENvironnement Industriel). The authors thank the Nord-Pas de Calais Region, the Centre Region, the European Funds for Regional Economic Development and the Centre d’Études et de Recherches Lasers et Applications (CERLA) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bejaoui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bejaoui, S., Lemaire, R., Desgroux, P. et al. Experimental study of the E(mλ)/E(m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature. Appl. Phys. B 116, 313–323 (2014). https://doi.org/10.1007/s00340-013-5692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5692-y

Keywords

Navigation