Skip to main content
Log in

Performance improvement of a source by a high-resolution thin-layer-graphite spectrometer and a polycapillary lens

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A tabletop, short-pulse laser-based hard X-ray () source equipped with an advanced X-ray optics and dedicated for high-resolution spectroscopy and time-resolved diffraction is described. Operation of the source together with a high-resolution spectrometer containing a large-aperture highly annealed pyrolytic graphite gave a resolution E/ΔE of ~1,800 for the spectral range around line of Cu. The estimated total flux of the 8.05-keV photons was equal to 5.9 × 1010 ph/s in 4π sr. Performance boost of the source caused by X-ray optics relied on the significant increase in the Cu- photon flux on both, the sample (4.7 × 106 ph/s) and the detector (3.4 × 103 ph/s). A spectral brightness of 1.4 × 107 ph/s/mm2/mrad2 was derived from the source parameters for the line. Better performance due to high collecting power and reflectivity of the spectrometer enabled application of the cross-correlation technique with an Ni foil. An upper bound of emission duration of 323 ± 47 fs was obtained in this measurement. X-ray absorption near-edge spectroscopy on an Ni sample with an acquisition time of only 15 min confirmed the increased capability of the setup also for continuous spectrum (bremsstrahlung).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Rose-Petruck, R. Jiminez, T. Guo, A. Cavalleri, C. Siders, F. Raksi, J.A. Squier, B.C. Walker, K.R. Wilson, C.P.J. Barty, Nature 398, 310 (1999)

    Article  ADS  Google Scholar 

  2. F. Zamponi, Z. Ansari, C.V. Korff Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, M. Haschke, Appl. Phys. A 96, 51 (2009)

    Article  ADS  Google Scholar 

  3. Yan. Jiang, Taewoo. Lee, Christoph.G. Rose-Petruck, J. Opt. Soc. Am. B 20, 1 (2003)

    Article  Google Scholar 

  4. M. Silies, H. Witte, S. Linden, J. Kutzner, I. Uschmann, E. Förster, H. Zacharias, Appl. Phys. A 96, 59 (2009)

    Article  ADS  Google Scholar 

  5. T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, H. Schwoerer, E. Förster, R. Sauerbrey, Appl. Phys. B 72, 15–20 (2001)

    Article  ADS  Google Scholar 

  6. J.A. Chakera, A. Ali, Y.Y. Tsui, R. Fedosejevs, Appl. Phys. Lett. 93, 261501 (2008)

    Article  ADS  Google Scholar 

  7. Yasuaki. Okano, Katsuya. Oguri, Tadashi. Nishikawa, Hidetoshi. Nakano, J. Phys: Conf. Ser. 59, 769 (2007)

    ADS  Google Scholar 

  8. Hidetoshi. Nakano, Yoshinori. Goto, Lu. Peixiang, Tadashi. Nishikawa, Naoshi. Uesugi, Appl. Phys. Lett. 75, 16 (1999)

    Article  Google Scholar 

  9. F. Dorchies, M. Harmand, D. Descamps, C. Fourment, S. Hulin, S. Petit, O. Peyrusse, J.J. Santos, Appl. Phys. Lett. 93, 121113 (2008)

    Article  ADS  Google Scholar 

  10. Fang. Shan, Ting. Guo, J. Chem. Phys. 122, 244710 (2005)

    Article  ADS  Google Scholar 

  11. S. Khan, K. Holldack, T. Kachel, R. Mitzner, T. Quast, Phys. Rev. Lett. 97, 074801 (2006)

    Article  ADS  Google Scholar 

  12. Ch. Reich, P. Gibbon, I. Uschmann, E. Foerster, Phys. Rev. Lett. 84, 4846 (2000)

    Article  ADS  Google Scholar 

  13. A.O. Er, J. Chen, P.M. Rentzepis, J. Appl. Phys. 112, 031101 (2012)

    Article  ADS  Google Scholar 

  14. Yaron. Danon, Bryndol. Sones, Robert. Block, Nucl. Instrum. Methods Phys. Res. A 524, 287 (2004)

    Article  ADS  Google Scholar 

  15. H. Witte, M. Silies, T. Haarlammert, J. Hüve, J. Kutzner, H. Zacharias, Appl. Phys. B 90, 11 (2008)

    Article  ADS  Google Scholar 

  16. H. Legall, H. Stiel, A. Antonov, I. Grigorieva, V. Arkadiev, A. Bjeoumikhov, A. Erko, Proceedings of FEL (BESSY, Berlin, Germany, 2006), pp. 798–801

    Google Scholar 

  17. Herbert. Legall, Holger. Stiel, Matthias. Schnuerer, Marcel. Pagels, Birgit. Kanngießer, Matthias. Mueller, Burkhard. Beckhoff, Inna. Grigorieva, Alexander. Antonov, Vladimir. Arkadiev, Aniouar. Bjeoumikhov, J. Appl. Cryst. 42, 572 (2009)

    Article  Google Scholar 

  18. H. Legall, H. Stiel, V. Arkadiev, A.A. Bjeoumikhov, Opt. Express 14, 10 (2006)

    Article  Google Scholar 

  19. M. Beye, O. Krupin, G. Hays, A.H. Reid, D. Rupp, S. de Jong, S. Lee, W.-S. Lee, Y.-D. Chuang, R. Coffee, J.P. Cryan, J.M. Glownia, A. Fohlisch, M.R. Holmes, A.R. Fry, W.E. White, C. Bostedt, A.O. Scherz, H.A. Durr, W.F. Schlotter, Appl. Phys. Lett. 100, 121108 (2012)

    Article  ADS  Google Scholar 

  20. S. Schorb, T. Gorkhover, J.P. Cryan, J.M. Glownia, M.R. Bionta, R.N. Coffee, B. Erk, R. Boll, C. Schmidt, D. Rolles, A. Rudenko, A. Rouzee, M. Swiggers, S. Carron, J.-C. Castagna, J.D. Bozek, M. Messerschmidt, W.F. Schlotter, C. Bostedt, Appl. Phys. Lett. 100, 121107 (2012)

    Article  ADS  Google Scholar 

  21. S.M. Durbin, T. Clevenger, T. Graber, R. Henning, Nat. Photonics 6, 111 (2012)

    Article  ADS  Google Scholar 

  22. T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, H. Schwoerer, Ch. Reich, P. Gibbon, E. Foerster, R. Sauerbrey, K. Ortner, C.R. Becker, Phys. Rev. E 65, 016412 (2001)

    Article  ADS  Google Scholar 

  23. K.H. Bunnemann, Ann. Phys. (Berlin) 18, 480 (2009)

    Article  ADS  Google Scholar 

  24. C. Stamm, T. Kachel, N. Pontius, R. Mitzner, T. Quast, K. Holldack, S. Khan, C. Lupulescu, E.F. Aziz, M. Wietstruk, H.A. Dürr, A.N.D.W. Eberhardt, Nat. Mater. 6, 740 (2007)

    Article  ADS  Google Scholar 

  25. A. Anspoks, A. Kuzmin Jr, Non-Cryst. Solids 357, 2604 (2011)

    Article  ADS  Google Scholar 

  26. Y.A. Kozinkin, A.A. Novakovich, A.V. Kozinkin, R.V. Vedrinskii, Y.V. Zubavichus, A.A. Veligzhanin, Phys. Solid State 53, 1 (2011)

    Article  ADS  Google Scholar 

  27. S. Fourmaux, L. Lecherbourg, M. Harmand, M. Servol, J.C. Kieffer, Rev. Sci. Instrum. 78, 113104 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

PVN acknowledges support of the World Class University program (R31-2008-000-10026-0) grant provided by National Research Foundation (NRF) of Korea. HS acknowledges support by the BMBF German-Korean Collaboration Program (no. KOR 10/016). The project was also supported by the Ministry of Education, Science and Technology of Korea through Basic Science Research Program (No. R15-2008-006-03001-0), the Korea-Germany collaboration program of Korean National Research Foundation (no. 2010-00633) and by Gwangju Institute of Science and Technology through a grant from the DASAN fund and the Photonics 2020 project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Nickles or K. A. Janulewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, M., Urrehman, Z., Im, H. et al. Performance improvement of a source by a high-resolution thin-layer-graphite spectrometer and a polycapillary lens. Appl. Phys. B 116, 305–311 (2014). https://doi.org/10.1007/s00340-013-5691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5691-z

Keywords

Navigation