Applied Physics B

, Volume 114, Issue 1–2, pp 275–281 | Cite as

Long-term drifts of stray electric fields in a Paul trap

  • A. Härter
  • A. Krükow
  • A. Brunner
  • J. Hecker DenschlagEmail author


We investigate the evolution of quasi-static stray electric fields in a linear Paul trap over a period of several months. Depending on how these electric fields are initially induced, we observe very different timescales for the field drifts. Photo-induced electric fields decay on timescales of days. We interpret this as photo-electrically generated charges on insulating materials which decay via discharge currents. In contrast, stray fields due to the exposure of the ion trap to a beam of Ba atoms mainly exhibit slow dynamics on the order of months. We explain this observation as a consequence of a coating of the trap electrodes by the atomic beam. This may lead to contact potentials which can slowly drift over time due to atomic diffusion and chemical processes on the surface. In order not to perturb the field evolutions, we suppress the generation of additional charges and atomic coatings in the Paul trap during the measurements. For this, we shield the ion trap from ambient light and only allow the use of near-infrared lasers. Furthermore, we minimize the flux of atoms into the ion trap chamber. Long-term operation of our shielded trap led us to a regime of very low residual electric field drifts of less than 0.03 V/m per day.


Atomic Beam Contact Potential Photoelectric Effect Paul Trap Atom Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Stefan Schmid and Wolfgang Schnitzler for help in the laboratory. This work was supported by the German Research Foundation DFG within the SFB/TRR21.


  1. 1.
    D. Leibfried, R. Blatt, C. Monroe, D.J. Wineland, Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    R. Blatt, D. Wineland, Nature 453, 1008–1015 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    H. Häffner, C. Roos, R. Blatt, Phys. Rep. 469, 155–203 (2008)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Blatt, C.F. Roos, Nat. Phys. 8, 277–284 (2012)CrossRefGoogle Scholar
  5. 5.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319(5871), 1808–1812 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Schmid, A. Härter, J. Hecker Denschlag, Phys. Rev. Lett. 105, 133202 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    C. Zipkes, S. Palzer, C. Sias, M. Köhl, Nature 464, 388 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    A. Grier, M. Cetina, F. Orucevic, V. Vuletic, Phys. Rev. Lett. 102, 223201 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    W.G. Rellergert, S.T. Sullivan, S. Kotochigova, A. Petrov, K. Chen, S.J. Schowalter, E.R. Hudson, Phys. Rev. Lett. 107, 243201 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Nat. Commun. 3, 1126 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    F.H.J. Hall, M. Aymar, N. Bouloufa-Maafa, O. Dulieu, S. Willitsch, Phys. Rev. Lett. 107, 243202 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M. Harlander, M. Brownnutt, W. Hänsel, R. Blatt, New J. Phys. 12, 093035 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S.X. Wang, G. Hao Low, N.S. Lachenmyer, Y. Ge, P.F. Herskind, I.L. Chuang, J. Appl. Phys. 110, 104901 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, F. St. Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13(1), 013032 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    N. Yu, W. Nagourney, H. Dehmelt, J. Appl. Phys. 69(6), 3779–3781 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    R.G. DeVoe, C. Kurtsiefer, Phys. Rev. A 65, 063407 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    S. Narayanan, N. Daniilidis, S.A. Möller, R. Clark, F. Ziesel, K. Singer, F. Schmidt-Kaler, H. Häffner, J. Appl. Phys. 110(11), 114909 (2011)Google Scholar
  18. 18.
    D.T.C. Allcock, T.P. Harty, H.A. Janacek, N.M. Linke, C.J. Ballance, A.M. Steane, D.M. Lucas, R.L. Jarecki Jr., S.D. Habermehl, M.G. Blain, D. Stick, D.L. Moehring, Appl. Phys. B 107(4), 913–919 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Debatin, M. Kröner, J. Mikosch, S. Trippel, N. Morrison, M. Reetz-Lamour, P. Woias, R. Wester, M. Weidemüller, Phys. Rev. A 77, 033422 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83(10), 5025–5033 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger, J. Sterk, C. Monroe, Phys. Rev. Lett. 97, 103007 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    J. Labaziewicz, Y. Ge, D.R. Leibrandt, S.X. Wang, R. Shewmon, I.L. Chuang, Phys. Rev. Lett. 101, 180602 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    D.T.C. Allcock, L. Guidoni, T.P. Harty, C.J. Ballance, M.G. Blain, A.M. Steane, D.M. Lucas, New J. Phys. 13(12), 123023 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    D.A. Hite, Y. Colombe, A.C. Wilson, K.R. Brown, U. Warring, R. Jördens, J.D. Jost, K.S. McKay, D.P. Pappas, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 109, 103001 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    F. Rossi, G.I. Opat, J. Phys. D Appl. Phys. 25, 1349 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    J.B. Camp, T.W. Darling, R.E. Brown, New J. Phys. 71, 783 (1992)Google Scholar
  28. 28.
    A. Härter, A. Krükow, M. Dei  B. Drews, E. Tiemann, J. Hecker Denschlag, Nat. Phys. 9, 512–517 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Härter, A. Krükow, A. Brunner, J. Hecker Denschlag, Appl. Phys. Lett. 102, 221115 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S. Schmid, A. Härter, A. Frisch, S. Hoinka, J. Hecker Denschlag, Rev. Sci. Instrum. 83, 053108 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Härter
    • 1
  • A. Krükow
    • 1
  • A. Brunner
    • 1
    • 2
  • J. Hecker Denschlag
    • 1
    Email author
  1. 1.Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology (IQST)Universität UlmUlmGermany
  2. 2.Universität StuttgartStuttgartGermany

Personalised recommendations