Applied Physics B

, Volume 114, Issue 1–2, pp 267–273 | Cite as

A thin wire ion trap to study ion–atom collisions built within a Fabry–Perot cavity

  • Tridib Ray
  • S. Jyothi
  • N. Bhargava Ram
  • S. A. RangwalaEmail author


We report on the implementation of a thin wire Paul trap with tungsten wire electrodes for trapping ions. The ion trap geometry, though compact, allows large optical access enabling a moderate finesse Fabry–Perot cavity to be built along the ion trap axis. The design allows a vapor-loaded magneto-optical trap of alkali atoms to be overlapped with trapped atomic or molecular ions. The construction and design of the trap are discussed, and its operating parameters are determined, both experimentally and numerically, for Rb+. The macromotion frequencies of the ion trap for 85Rb+ are determined to be f r  = 43 kHz for the radial and f z  = 54 kHz for the axial frequencies, for the experimentally determined optimal operating parameters. The destructive off axis ion extraction and detection by ion counting is demonstrated. Finally, evidence for the stabilization and cooling of trapped ions, due to ion–atom interactions, is presented by studying the ion-atom mixture as a function of interaction time. The utility and flexibility of the whole apparatus, for a variety of atomic physics experiments, are discussed in conclusion.


Cold Atom Trap Depth Paul Trap Channel Electron Multiplier Resonant Charge Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge Prof. E Krishnakumar, TIFR, Mumbai for technical assistance. Arijit Sharma and Ravi K. are acknowledged for useful discussion and thoughtful inputs. The authors acknowledge the excellent technical support provided by Mr. Narayanaswami and the other members of the RRI machine shop for the fabrication of this experiment. Ms. S. Sujatha, RAL, RRI is acknowledged for crucial electronics fabrication.


  1. 1.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    K. Blaum, Y. Novikov, G. Werth, Contemp. Phys. 51, 149 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J. Ye, H.J. Kimble, Hidetoshi. Katori, Science 320, 1734 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Proceedings of the International School of Physics “Enrico Fermi”. Course CXL, (1999), pp. 67–176Google Scholar
  6. 6.
    W. Ketterle, M.W. Zwierlein, La Rivista del Nuovo Cimento 5(6), 247–422 (2008)ADSGoogle Scholar
  7. 7.
    R. Cote, V. Kharchenko, M.D. Lukin, Phys. Rev. Lett. 89, 0930001 (2002)CrossRefGoogle Scholar
  8. 8.
    W.W. Smith, O.P. Makarov, J. Lin, J. Mod. Opt. 52, 2253 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. Willitsch, M.T. Bell, A.D. Gingell, S.R. Procter, T.P. Softley, Phys. Rev. Lett. 100, 043203 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A.T. Grier, M. Cetina, F. Orucevic, V. Vuletic, Phys. Rev. Lett 102, 223201 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    W.G. Rellergert, S.T. Sullivan, S. Kotochigova, A. Petrov, K. Chen, S.J. Schowalter, E.R. Hudson, Phys. Rev. Lett. 107, 243201 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Lee, K. Ravi, S. A. Rangwala, Phys. Rev. A 87, 052701 (2013)Google Scholar
  13. 13.
    F.H.J. Hall, M. Aymar, N. Bouloufa-Maafa, O. Duilieu, S. Willitsch, Phys. Rev. Lett. 107, 243202 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Schmid, A. Harter, A. Frisch, S. Hoinka, J.Hecker Denschlag, Rev. Sci. Instrum. 83, 053108 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M.T. Bell, T. P. Softley, Mol. Phys. 107, 99 (2009)Google Scholar
  16. 16.
    K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Nat. Commun. 3, 1126 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    W. Paul, H. Steinwedel, Z. Naturforsch A 8, 448 (1953)ADSGoogle Scholar
  18. 18.
    J.D. Prestage, G.J. Dick, L. Malecki, J. Appl. Phys. 66, 1013 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps. (Springer, Heidelberg, 2005)Google Scholar
  20. 20.
    J. Kleinert, C. Haimberger, P.J. Zabawa, N.P. Bigelow, Phys. Rev. Lett. 99, 143002 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    T. Ray, A. Sharma, S. Jyothi, S.A. Rangwala, Phys. Rev. A 87, 033832 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Appl. Phys. B 107, 971 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    I. Sivarajah, D.S. Goodman, J.E. Wells, F.A. Narducci, W.W. Smith, Phys. Rev. A 86, 063419 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J.E. Sansonetti, W.C. Martin, J. Phys. Chem. Ref. Data 34, 1559–2259 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tridib Ray
    • 1
  • S. Jyothi
    • 1
  • N. Bhargava Ram
    • 1
  • S. A. Rangwala
    • 1
    Email author
  1. 1.Raman Research InstituteBangaloreIndia

Personalised recommendations