Skip to main content
Log in

Single calcium-40 ion as quantum memory for photon polarization: a case study

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present several schemes for heralded storage of polarization states of single photons in single ions, using the 40Ca+ ion and photons at 854 nm wavelength as specific example. We compare the efficiencies of the schemes and the requirements for their implementation with respect to the preparation of the initial state of the ion, the absorption process and its analysis. These schemes may be used to create and herald entanglement of two distant ions through entanglement swapping; they are easily adapted to other atomic systems and wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  2. B.B. Blinov, D.L. Moehring, L.-M. Duan, C. Monroe, Nature 428, 153 (2004)

    Article  ADS  Google Scholar 

  3. W. Rosenfeld, S. Berner, J. Volz, M. Weber, H. Weinfurter, Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  4. N. Akerman, S. Kotler, Y. Glickman, R. Ozeri, Phys. Rev. Lett. 109, 103601 (2012)

    Article  ADS  Google Scholar 

  5. S. Lloyd, M.S. Shahriar, J.H. Shapiro, Phys. Rev. Lett. 87, 167903 (2001)

    Article  ADS  Google Scholar 

  6. H. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, G. Rempe, Nature 473, 190 (2011)

    Article  ADS  Google Scholar 

  7. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, Nature 484, 195 (2012)

    Article  ADS  Google Scholar 

  8. M. Schug, J. Huwer, C. Kurz, P. Müller, J. Eschner, Phys. Rev. Lett. 110, 213603 (2013)

    Article  ADS  Google Scholar 

  9. C. Kurz, J. Huwer, M. Schug, P. Müller, J. Eschner, New J. Phys. 15, 055005 (2013)

    Article  ADS  Google Scholar 

  10. J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, J. Eschner, New J. Phys. 15, 025033 (2013)

    Article  ADS  Google Scholar 

  11. N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, J. Eschner, Nature Phys. 7, 17 (2011)

    Article  ADS  Google Scholar 

  12. S.A. Schulz, U.G. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008)

    Article  ADS  Google Scholar 

  13. P. Staanum, I.S. Jensen, R.G. Martinussen, D. Voigt, M. Drewsen, Phys. Rev. A 69, 032503 (2004)

    Article  ADS  Google Scholar 

  14. M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Nature 431, 1075 (2004)

    Article  ADS  Google Scholar 

  15. M. Knoop, C. Champenois, G. Hagel, M. Houssin, C. Lisowski, M. Vedel, F. Vedel, Eur. Phys. J. D 29, 163 (2004)

    Article  ADS  Google Scholar 

  16. H.C. Nägerl, C. Roos, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 61, 023405 (2000)

    Article  ADS  Google Scholar 

  17. Here we use a suitably abbreviated notation for the CGCs. Various “standard” notations are found in the literature, to which our definition is related through \(C_{m_{\rm D}, m_{854}, m_{\rm P}} = C_{m_{\rm D}, m_{854}, m_{\rm P}}^{5/2, 1, 3/2} = \langle 5/2, m_{\rm D}; 1, m_{854} | 5/2, 1, 3/2, m_{\rm P}\), and likewise for \(C_{m_{\rm P}, m_{393}, m_{\rm S}}\)

  18. E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Nature 466, 730 (2010)

    Article  ADS  Google Scholar 

  19. Creation of a superposition state requires at least two optical qubit rotations, which may be performed with individual infidelities below 1%; see, for example, F. Schmidt-Kaler, S. Gulde, M. Riebe, T. Deuschle, A. Kreuter, G. Lancaster, C. Becher, J. Eschner, H. Häffner, R. Blatt, J. Phys. B 36, 623 (2003)

  20. T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  21. N. Sangouard, J.-D. Bancal, P. Müller, J. Ghosh, J. Eschner, New J. Phys. 15, 085004 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Nicolas Sangouard for motivating discussions. This work was partially supported by the BMBF (Verbundprojekt QuOReP, CHIST-ERA project QScale), the German Scholars Organization/Alfred Krupp von Bohlen und Halbach-Stiftung, the EU (AQUTE Integrating Project), and the ESF (IOTA COST Action).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, P., Eschner, J. Single calcium-40 ion as quantum memory for photon polarization: a case study. Appl. Phys. B 114, 303–306 (2014). https://doi.org/10.1007/s00340-013-5681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5681-1

Keywords

Navigation