Advertisement

Applied Physics B

, Volume 116, Issue 1, pp 203–210 | Cite as

Simple vibration-insensitive cavity for laser stabilization at the 10−16 level

  • J. Keller
  • S. Ignatovich
  • S. A. Webster
  • T. E. Mehlstäubler
Article

Abstract

We present the design and realization of two reference cavities for ultra-stable lasers addressing narrow transitions in mixed-species (115In+ / 172Yb+) Coulomb crystals. With a simple set-up, we achieve a fractional frequency instability close to the thermal noise limit of a 12-cm-long cavity, reaching σ y  = 4.7 × 10−16 at 10 s with a linear drift of 53 mHz/s. We discuss the individual instability contributions and show that in a set-up with a lower thermal noise floor and vibration sensitivity, an instability of 1 × 10−16 can be reached. To achieve this, we implement a vibration-insensitive design for a 30-cm-long cavity mounted horizontally and conduct first tests that show a sensitivity of 1.8 × 10−11 ms−2 to vertical accelerations. This is about a factor of 20 less than the value observed for the short cavity. Mechanical tolerances and ways to further reduce the sensitivity are discussed.

Keywords

Frequency Instability Vertical Acceleration Linear Drift Finite Element Method Calculation Coulomb Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank C. Grebing for conducting the frequency comb-based measurements, M. Okhapkin and C. Tamm for fruitful discussions, P.O. Schmidt for comments on the manuscript, and T. Legero for stimulating discussions and optically contacting the high-reflectivity mirrors. This work was supported by DFG through QUEST and DFG/RFBR (Grant No. 10-02-91335).

References

  1. 1.
    C. Chou, D. Hume, J. Koelemeij, D. Wineland, T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, D. Wineland, Phys. Rev. A 47, 3554 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    N. Herschbach, K. Pyka, J. Keller, T. Mehlstäubler, Appl. Phys. B 107, 891 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    K. Pyka, N. Herschbach, J. Keller, T. Mehlstäubler, Appl. Phys. B (2013). doi: 10.1007/s00340-013-5580-5
  5. 5.
    E. Peik, T. Schneider, C. Tamm, J. Phys. B 39, 145 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    B. Young, F. Cruz, W. Itano, J. Bergquist, Phys. Rev. Lett. 82, 3799 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    K. Numata, A. Kemery, J. Camp, Phys. Rev. Lett. 93, 250602 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    T. Nazarova, F. Riehle, U. Sterr, Appl. Phys. B 83, 531 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    A. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. Foreman, M. Boyd, S. Blatt, J. Ye, Opt. Lett. 32, 641 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    S. Webster, M. Oxborrow, S. Pugla, J. Millo, P. Gill, Phys. Rev. A 77, 033847 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    J. Millo, D. Magalhães, C. Mandache, Y. Le Coq, E. English, P. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Phys. Rev. A 79, 053829 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    S. Dawkins, R. Chicireanu, M. Petersen, J. Millo, D. Magalhães, C. Mandache, Y. Le Coq, S. Bize, Appl. Phys. B 99, 41 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, J. Ye, Nat. Photonics 6, 687 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    E. D’Ambrosio, Phys. Rev. D 67, 102004 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    B. Mours, E. Tournefier, J.Y. Vinet, Class Quant. Grav. 23, 5777 (2006)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, P. Schmidt, Appl. Phys. B (2013). doi: 10.1007/s00340-013-5464-8
  17. 17.
    G. Cole, W. Zhang, M. Martin, J. Ye, M. Aspelmeyer, Nat. Photonics 7, 644 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.S. Ma, C. Oates, Nat. Photonics 5, 158 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    T. Nicholson, M. Martin, J. Williams, B. Bloom, M. Bishof, M. Swallows, S. Campbell, J. Ye, Phys. Rev. Lett. 109, 230801 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    S. Häfner, U. Sterr, Priv. Comm.Google Scholar
  21. 21.
    Corning Inc. \(\hbox{ULE}^{\circledR}\) Corning code 7973 data sheetGoogle Scholar
  22. 22.
    T. Legero, T. Kessler, U. Sterr, J. Opt. Soc. Am. B 27, 914 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    A. Schawlow, C. Townes, Phys. Rev. 112, 1940 (1958)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, Opt. Commun. 283, 4696 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Littman, H. Metcalf, Appl. Opt. 17, 2224 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    L.S. Ma, P. Jungner, J. Ye, J. Hall, Opt. Lett. 19, 1777 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    J. Gray, D. Allan, Proceeding of the 28th Frequency Control Symposium. p. 243 (1974)Google Scholar
  29. 29.
    H. Telle, B. Lipphardt, J. Stenger, Appl. Phys. B 74, 1 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Keller
    • 1
  • S. Ignatovich
    • 2
  • S. A. Webster
    • 3
  • T. E. Mehlstäubler
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Institute of Laser PhysicsNovosibirskRussia
  3. 3.M Squared Lasers LtdGlasgowScotland, UK

Personalised recommendations