Applied Physics B

, Volume 114, Issue 1–2, pp 257–266 | Cite as

Trapping ions at high temperatures: thermal decay of C60 +

  • D. GerlichEmail author
  • S. Decker


An ensemble of trapped C60 + ions has been heated with a continuous CO2 laser to a stationary state where, in time average, the same energy is emitted as absorbed. With 10 W laser power, equilibria have been reached, which correspond to temperatures between 1800 and 2000 K. The ions are confined in a radio frequency quadrupole field created by a set of ring electrodes (split ring electrode trap). The number of stored ions can be determined in two ways, on one side by extracting and counting them with a Daly detector, on the other side via imaging their thermal emission onto an intensified CCD camera. Single photon sensitivity and a spatial resolution of a few μm provide precise information on the geometrical distribution and the total number of the trapped C60 + ions. The spectral distribution of the emitted photons or their total number provides information on the internal energy of the ions. Trapping times of many minutes make it possible to follow very slow thermal loss of C2 from hot C60 + resulting in fragmentation rates between 10−1 and 10−3 s−1. Correlating them to the internal temperature leads to a curved Arrhenius plot. The resulting parameters are smaller than the values derived from nonequilibrium ensembles.


Fullerene Ring Electrode Arrhenius Parameter Paul Trap Radio Frequency Quadrupole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support of the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.


  1. 1.
    P. Ehrenfreund, B.H. Foing, Science 329, 1159 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    E.A. Rohlfing, J. Chem. Phys. 89, 8103 (1988)CrossRefGoogle Scholar
  3. 3.
    C. Schulz, B.F. Kock, M. Hofmann, H. Mchelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B. 83, 333 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    R.F. Wuerker, H. Shelton, R.V. Langmuir, J. Appl. Phys. 30, 342 (1959)ADSCrossRefGoogle Scholar
  5. 5.
    E. Fischer, Z. Phys. 156, 1 (1959)ADSCrossRefGoogle Scholar
  6. 6.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    R.E. March, Mass Spectrom. Rev. 28, 961 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Schlemmer, S. Wellert, F. Windisch, M. Grimm, S. Barth, D. Gerlich, Appl. Phys. A 78, 629 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M.M. Abbas, D. Tankosic, P.D. Craven, J.F. Spann, A. LeClair, Astrophys. J. 645, 324 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S. Schlemmer, J. Illemann, S. Wellert, D. Gerlich, J. Appl. Phys. 90, 5410 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    R. Wörgötter, B. Dünser, P. Scheier, T.D. Märk, M. Foltin, C.E. Klots, J. Laskin, C. Lifshitz, J. Chem. Phys. 104, 1225 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    S. Matt, O. Echt, P. Scheier, T.D. Märk, Chem. Phys. Lett. 348, 194 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    C. Lifshitz, Int. J. Mass Spectrom. 200, 423 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    K. Hansen, E.E.B. Campbell, O. Echt, Int. J. Mass Spectrom. 252, 79 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J.U. Andersen, C. Gottrup, K. Hansen, P. Hvelplund, M.O. Larsson, Eur. Phys. J. D 17, 189 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    D. Gerlich, Adv. Chem. Phys. LXXXII, 1 (1992)Google Scholar
  17. 17.
    T.M. Kim, A.V. Tolmachev, R. Harkewicz, D.C. Prior, G.A. Anderson, H.R. Udseth, R.D. Smith, T.H. Bailey, V.S. Rakov, J.H. Futrel, Anal. Chem. 72, 2247 (2000)CrossRefGoogle Scholar
  18. 18.
    D. Gerlich, J. Anal. At. Spectrom. 19, 581 (2004)CrossRefGoogle Scholar
  19. 19.
    D. Gerlich, in Low temperatures and cold molecules ed. by I.W.M. Smith ISBN-13 978-1-84816-209-9, (Imperial College Press, Distributer: World Scientific Publishing Co. Pte. Ltd., Singapore, 2008) p. 121Google Scholar
  20. 20.
    D. Gerlich, in Low temperatures and cold molecules, ed. by I.W.M. Smith, ISBN-13 978-1-84816-209-9, (Imperial College Press, Distributer: World Scientific Publishing Co. Pte. Ltd., Singapore, 2008) p. 295Google Scholar
  21. 21.
    J. Jašík, J. Žabka, J. Roithová, D. Gerlich, Int. J. Mass Spectrom., (2013)
  22. 22.
    J. Abrefah, D.R. Olander, M. Balooch, W.J. Siekhaus, Appl. Phys. Lett. 60, 1313 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    S. Decker, PhD Thesis TU Chemnitz,, (2009)
  24. 24.
    D. Knight, M.H. Prior, J. Appl. Phys. 50, 3044 (1979)ADSCrossRefGoogle Scholar
  25. 25.
    J.U. Andersen, E. Bonderup, K. Hansen, J. Phys. B At. Mol. Opt. Phys. 35, R1 (2002)ADSGoogle Scholar
  26. 26.
    A.A. Lucas, L. Henrard, Ph Lambin, Nucl. Instrum. Methods Phys. Res. B96, 470 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    R. Mitzner, E.E.B. Campbell, J. Chem. Phys. 103, 2445 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    K. Hansen, J.U. Andersen, H. Cederquist, C. Gottrup, P. Hvelplund, M.O. Larsson, V.V. Petrunin, H.T. Schmidt, Eur. Phys. J. D 9, 351 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    J.U. Andersen, E. Bonderup, Eur. Phys. J. D 11, 413 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    E. Kolodney, A. Budrevich, B. Tsipinuk, Phys. Rev. Lett. 74, 510 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Natural ScienceUniversity of TechnologyChemnitzGermany
  2. 2.Inficon GmbH KölnCologneGermany

Personalised recommendations