Applied Physics B

, Volume 114, Issue 1–2, pp 295–301 | Cite as

Sub-micron positioning of trapped ions with respect to the absolute center of a standing-wave cavity field

  • Rasmus B. LinnetEmail author
  • Ian D. Leroux
  • Aurélien Dantan
  • Michael Drewsen


We demonstrate that it is possible, with sub-micron precision, to locate the absolute center of a Fabry–Pérot resonator oriented along the radiofrequency-field-free axis of a linear Paul trap through the application of two simultaneously resonating optical fields. In particular, we apply a probe field, which is near-resonant with an electronic transition of trapped ions, simultaneously with an off-resonant strong field acting as a periodic AC Stark-shifting potential. Through the resulting spatially modulated fluorescence signal, we can find the cavity center of an 11.7-mm-long symmetric Fabry–Pérot cavity with a precision of ±135 nm, which is smaller than the periodicity of the individual standing-wave fields. This can, e.g., be used to position the minimum of the axial trap potential with respect to the center of the cavity at any location along the cavity mode.


Cavity Mode Lattice Field Cavity Field Stark Shift Dynamical Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the European Commission (STREP PICC and ITN CCQED) and the Carlsberg Foundation.


  1. 1.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Adv. At. Opt. Phys. 42, 95 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    M. BenDahan, E. Peik, J. Reichel, Y. Castin, C. Salomon, Phys. Rev. Lett. 76, 4508 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    D.J. Wineland, H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975)Google Scholar
  6. 6.
    D. Leibfried, R. Blatt, C. Monroe, D.J. Wineland, Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    R. Blumel, J.M. Chen, E. Peik, W. Quint, W. Schleich, Y.R. Shen, H. Walther, Nature 334, 309 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J. Hoffnagle, R.G. DeVoe, L. Reyna, R.G. Brewer, Phys. Rev. Lett. 61, 255 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    R. Blumel, C. Kappler, W. Quint, H. Walther, Phys. Rev. A 40, 808 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    R.G. Brewer, J. Hoffnagle, R.G. DeVoe, Phys. Rev. Lett. 65, 2619 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    R. Blatt, D.J. Wineland, Nature 453, 1008 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    S. Willitsch, M.T. Bell, A.D. Gingell, T.P. Softley, Phys. Chem. Chem. Phys. 10, 7200 (2008)CrossRefGoogle Scholar
  15. 15.
    C. Schneider, M. Enderlein, T. Huber, S. Dürr, T. Schaetz, Nature Phot. 4, 772 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M. Enderlein, T. Huber, C. Schneider, T. Schaetz, Phys. Rev. Lett. 109, 233004 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    R.B. Linnet, I.D. Leroux, M. Marciante, A. Dantan, M. Drewsen, Phys. Rev. Lett. 109, 233005 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    L. Karpa, A. Bylinskii, D. Gangloff, M. Cetina, V. Vuletić, arxiv:1304.0049 (2013)Google Scholar
  19. 19.
    C. Cormick, T. Schaetz, G. Morigi, New J. Phys. 13, 043019 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Drewsen, T. Matthey, A. Mortensen, J.P. Hansen, arxiv:1202.2544 (2012)Google Scholar
  21. 21.
    P. Horak, A. Dantan, M. Drewsen, Phys. Rev. A 86, 043433 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    C. Cormick, G. Morigi, Phys. Rev. Lett. 109, 053003 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    I. García- Mata, V.O. Zhirov, L.D. Shepelyansky, Eur. J. Phys. D 41, 325 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A. Benassi, A. Vanossi, E. Tosatti, Nat. Comm. 2, 236 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter, H. Häffner, New J. Phys. 13, 075012 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    C. Schneider, D. Porras, T. Schaetz, Rep. Prog. Phys. 75, 024401 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    F.P. Herskind, A. Dantan, P.J. Marler, M. Albert, M. Drewsen, Nature Phys. 5, 494 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    M. Albert, A. Dantan, M. Drewsen, Nature Phot. 5, 633 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    C. Clausen, N. Sangouard, M. Drewsen, New J. Phys. 15, 025021 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    R.G. Guthohrlein, M. Keller, K. Hayasaka, W. Lange, H. Walther, Nature 414, 49 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    B.A. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. Lett. 83, 103001 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    F.P. Herskind, A. Dantan, M. Albert, P.J. Marler, M. Drewsen, J. Phys. B 42, 154008 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley-VCH, Weinheim, 2004)Google Scholar
  34. 34.
    F.P. Herskind, A. Dantan, B.M. Langkilde-Lauesen, A. Mortensen, L.J. Sørensen, M. Drewsen, Appl. Phys. B 93, 373 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    T.A. Grier, M. Cetina, F. Oručević, V. Vuletić, Phys. Rev. Lett. 102, 223201 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    C. Zipkes, S. Palzer, L. Ratschbacher, C. Sias, M. Köhl, Phys. Rev. Lett. 105, 133201 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    S. Schmid, A. Härter, H.J. Denschlag, Phys. Rev. Lett. 105, 133202 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    M. Cetina, T.A. Grier, V. Vuletić, Phys. Rev. Lett. 109, 253201 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K.M. Beck, Y. Ge, M. Scholz, A.T. Grier, I. Chuang, V. Vuletić, arXiv:1302.2904 (2013)Google Scholar
  40. 40.
    M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Nature 431, 1075 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    G.H. Barros, A. Stute, E.T. Northup, C. Russo, O.P. Schmidt, R. Blatt, New J. Phys. 11, 103004 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    A. Stute, B. Casabone, P. Schindler, T. Monz, O.P. Schmidt, B. Brandstätter, E.T. Northup, R. Blatt, Nature 485, 482 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    A. Stute, B. Casabone, B. Brandstätter, K. Friebe, E.T. Northup, R. Blatt, Nature Phot. 7, 219 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    R.D. Leibrandt, J. Labaziewicz, V. Vuletic, L.I. Chuang, Phys. Rev. Lett. 103, 103001 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    H.P.W. Pinkse, T. Fischer, P. Maunz, G. Rempe, Nature 404, 365 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    J.C. Hood, W.T. Lynn, C.A. Doherty, S.A. Parkins, J.H. Kimble, Science 287, 1447 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    D.J. Thompson, G.T. Tiecke, P.N. de Leon, J. Feist, V.A. Akimov, M. Gullans, S.A. Zibrov, V. Vuletic, D.M. Lukin, Science 340, 1202 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    P. Maunz, T. Puppe, I. Schuster, N. Syassen, H.P.W. Pinkse, G. Rempe, Nature 428, 50 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, G. Rempe, Nature Phys. 1, 122 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, H.P.W. Pinkse, K. Murr, G. Rempe, Nature 462, 898 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    A. Reiserer, C. Nölleke, S. Ritter, G. Rempe, Phys. Rev. Lett. 110, 223003 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    H. Ritsch, P. Domokos, F. Brennecke, T. Esslinger, Rev. Mod. Phys. 85, 553 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    T. Botter, C.D.W. Brooks, S. Schreppler, N. Brahms, M.D. Stamper-Kurn, Phys. Rev. Lett. 110, 153001 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    D.M. Stamper-Kurn, arxiv:1204.4351 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rasmus B. Linnet
    • 1
    Email author
  • Ian D. Leroux
    • 1
    • 2
  • Aurélien Dantan
    • 1
  • Michael Drewsen
    • 1
  1. 1.QUANTOP, Danish National Research Center for Quantum Optics, Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  2. 2.Physikalisch-Technische BundesanstaltBrunswickGermany

Personalised recommendations