Applied Physics B

, Volume 114, Issue 1–2, pp 89–98 | Cite as

Buffer-gas-cooled ion clouds in a classical Paul trap: superimposed stability diagrams and trapping capacity investigations

  • H. Leuthner
  • G. WerthEmail author


Ion clouds of different species and variable size are stored in a 3D Paul trap and detected after extraction from the trap. We report on measurements of the superimposed stability regions of four simultaneously stored ion species. We determine the operating conditions for trapping capacity under variation of buffer gas pressure and observe space charge shifts for a specific ion in the presence of other elements.


Space Charge Stability Diagram Nonlinear Resonance Paul Trap Trapping Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The experiments were supported by the Deutsche Forschungsgemeinschaft. We thank Stefan Krause for his providing programs for data taking and handling as well as Alexandros Drakoudis and Martin Söllner for their help and fruitful discussions.


  1. 1.
    R.E. March, R.J. Hughes, Quadrupole storage mass spectrometry (Wiley-Interscience, New York, 1989)Google Scholar
  2. 2.
    R.G. Cooks, G.L. Glish, S.A. Mc Luckey, R.E. Kaiser, Ion trap mass spectrometry. Chem. Eng. News 69, 12 (1991)CrossRefGoogle Scholar
  3. 3.
    R.E. March, in Encyclopedia of analytical chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2000), pp. 11848–11872Google Scholar
  4. 4.
    J.F.J. Todd John, R.E. March, E. Raymond, Quadrupole ion trap mass spectrometry, 2nd edn. (Wiley-Interscience, New York, 2005)Google Scholar
  5. 5.
    Y. Wang, J. Franzen, The non-linear resonance ion trap, Part 3. multipole components in three types of practical ion trap. Int. J. Mass Spectrom. Ion. Proc. 132, 155 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Wang, J. Franzen, K.P. Wanczek, The non-linear resonance ion trap. Part 2. A general theoretical analysis. Int. J. Mass Spectrom. Ion. Proc. 124, 125 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    R. Alheit, S. Kleineidam, F. Vedel, M. Vedel, G. Werth, Higher order non-linear resonances in a Paul trap. Int. J. Mass Spectrom. Ion. Proc. 154, I155 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    M. Sudakov, D.J. Douglas, Linear quadrupoles with added octopole fields. Rapid Comm. Mass Spectrom. 17, 2290 (2003)CrossRefGoogle Scholar
  9. 9.
    Holzki M (1997) Untersuchung von gekoppelten nichtlinearen Oszillationen einer Ionenwolke in Ionenfallen, thesis, MainzGoogle Scholar
  10. 10.
    R. Alheit, Th Gudjons, S. Kleineidam, G. Werth, Some observations on higher-order non-linear resonances in a Paul trap. Rapid Comm. Mass Spectrom. 10, 583 (1996)CrossRefGoogle Scholar
  11. 11.
    M. Vedel, J. Rocher, M. Knoop, F. Vedel, Evidence of radial-axial motion couplings in an rf stored ion cloud. Appl. Phys. B 66, 191 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    R. Iffländer, G. Werth, Optical detection of ions confined in a rf quadrupole trap. Metrologia 13, 167 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    F.G. Major, H.G. Dehmelt, Exchange-collision technique for the rf spectroscopy of stored ions. Phys. Rev. 170, 91 (1968)ADSCrossRefGoogle Scholar
  14. 14.
    C. Schwebel, P.A. Möller, P.T. Manh, Formation et confinement d’ions multicharges dans un champ quadrupolaire a haute fréquence. Revue de Physique Appliquée T 10, 227 (1975)CrossRefGoogle Scholar
  15. 15.
    E. Fischer, Die dreidimensionale Stabilisierung von Ladungsträgern in einem Vierpolfeld. Z. Physik 156, 1 (1959)ADSCrossRefGoogle Scholar
  16. 16.
    C. Meis, M. Desainfuscien, M. Jardino, Analytical calculation of the space charge potential and the temperature of stored ions in an rf quadrupole trap. Appl. Phys. B 45, 59 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    F. Vedel, M. Vedel, Nonlinear effects in the detection of stored ions. Phys. Rev. A 41, 2348 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    R. Alheit, X.C. Chu, M. Hoefer, M. Holzki, G. Werth, R. Blümel, Nonlinear collective oscillations of an ion cloud in a Paul trap. Phys. Rev. A 56, 4023 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Rettinghaus G (1965) Nachweis niedriger Partialdrücke mit dem Ionenkäfig, Ph. D.-thesis, BonnGoogle Scholar
  20. 20.
    L.D. Landau, E.M. Lifschitz, Lehrbuch der theoretischen Physik, Bd. 1 Mechanik, 9th edn. (Akademie-Verlag, Berlin, 1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für PhysikJohannes Gutenberg Universität MainzMainzGermany

Personalised recommendations