Skip to main content
Log in

All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel multipath Mach–Zehnder interferometer (m-MZI) is proposed and experimentally demonstrated, which is fabricated by fusion splicing a segment of all-solid multi-core fiber (MCF) between two sections of single mode fiber-28 with a well-controlled lateral offset at the splice points. Beam propagation method-based simulation results demonstrated light passing throw MCF from multiple paths. Experiments with different lengths of MCF were implemented to investigate our proposed m-MZI’s response to temperature and strain. Compared with previously reported optical fiber modal interferometers, higher phase sensitivity can be obtained in our scheme due to the multipath interference configuration embedded in one fiber. A very high temperature sensitivity of 130.6 pm/°C has been achieved, and the maximum strain sensitivity is less than 0.284 pm/με in all experiments. A record low strain-to-temperature cross-sensitivity of 6.2 × 10−4 °C/με has been realized, and it shows great significance of this in-fiber integrated multipath Mach–Zehnder interferometer in practical temperature sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. H.Y. Choi, M.J. Kim, B.H. Lee, All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 15, 5711–5720 (2007)

    Article  ADS  Google Scholar 

  2. D. Bo, Z. Da-Peng, W. Li, Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors. J. Lightwave Technol. 28, 1011–1015 (2010)

    Article  ADS  Google Scholar 

  3. L. Jiang, J. Yang, S. Wang, B. Li, M. Wang, Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 36, 3753–3755 (2011)

    Article  ADS  Google Scholar 

  4. T. Zhaobing, S.S.H. Yam, J. Barnes, W. Bock, P. Greig, J.M. Fraser, H.P. Loock, R.D. Oleschuk, Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technol. Lett. 20, 626–628 (2008)

    Article  ADS  Google Scholar 

  5. J. Villatoro, V.P. Minkovich, D. Monz, O. N-Hern, A. Ndez, Compact modal interferometer built with tapered microstructured optical fiber. IEEE Photonics Technol. Lett. 18, 1258–1260 (2006)

    Article  ADS  Google Scholar 

  6. S. Feng, H. Li, O. Xu, S. Lu, S. Jian, Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber. in Asia Communications and Photonics, p. 76301R (2009)

  7. B. Kim et al., Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications. Opt. Express 17(18), 15502–15507 (2009)

    Article  ADS  Google Scholar 

  8. O. Frazao, S. Silva, J. Viegas, J.M. Baptista, J.L. Santos, J. Kobelke, K. Schuster, All fiber Mach–Zehnder interferometer based on suspended twin-core fiber. IEEE Photonics Technol. Lett. 22, 1300–1302 (2010)

    Article  ADS  Google Scholar 

  9. J. Villatoro, V.P. Minkovich, V. Pruneri, G. Badenes, Simple all-microstructured-optical-fiber interferometer built via fusion splicing. Opt. Express 15, 1491–1496 (2007)

    Article  ADS  Google Scholar 

  10. L.V. Nguyen, D. Hwang, S. Moon, D.S. Moon, Y. Chung, High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 16, 11369–11375 (2008)

    Article  ADS  Google Scholar 

  11. L. Li, L. Xia, Z. Xie, D. Liu, All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 20, 11109–11120 (2012)

    Article  ADS  Google Scholar 

  12. Q. Wang, G. Farrell, All-fiber multimode-interference-based refractometer sensor: proposal and design. Opt. Lett. 31, 317–319 (2006)

    Article  ADS  Google Scholar 

  13. S.M. Nalawade, H.V. Thakur, Photonic crystal fiber strain-independent temperature sensing based on modal interferometer. IEEE Photonics Technol. Lett. 23, 1600–1602 (2011)

    Article  ADS  Google Scholar 

  14. Q. Wu, Y. Semenova, P. Wang, G. Farrell, High sensitivity SMS fiber structure based refractometer–analysis and experiment. Opt. Express 19, 7937–7944 (2011)

    Article  ADS  Google Scholar 

  15. J. Villatoro, M.P. Kreuzer, R. Jha, V.P. Minkovich, V. Finazzi, G. Badenes, V. Pruneri, Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Opt. Express 17, 1447–1453 (2009)

    Article  Google Scholar 

  16. L.L. Xue, L. Yang, Sensitivity Enhancement of RI Sensor Based on SMS Fiber Structure With High Refractive Index Overlay. J. Lightwave Technol. 30, 1463–1469 (2012)

    Article  ADS  Google Scholar 

  17. M. Yang, D.N. Wang, Y. Wang, C.R. Liao, Fiber in-line Mach–Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber. Opt. Lett. 36, 636–638 (2011)

    Article  Google Scholar 

  18. W. Qian, C.L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, H. Wei, High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Opt. Lett. 36, 1548–1550 (2011)

    Article  ADS  Google Scholar 

  19. S. Qiu, Y. Chen, F. Xu, Y. Lu, Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt. Lett. 37, 863–865 (2012)

    Article  ADS  Google Scholar 

  20. G. Weihs, M. Reck, H. Weinfurter, A. Zeilinger, All-fiber three-path Mach—Zehnder interferometer. Opt. Lett. 21, 302–304 (1996)

    Article  ADS  Google Scholar 

  21. S.A. Wade, S.F. Collins, K.T.V. Grattan, G.W. Baxter, Strain-independent temperature measurement by use of a fluorescence intensity ratio technique in optical fiber. Appl. Opt. 39, 3050–3052 (2000)

    Article  ADS  Google Scholar 

  22. Y. Zhu, P. Shum, H.W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, C. Lu, Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber. Opt. Lett. 30, 367–369 (2005)

    Article  ADS  Google Scholar 

  23. L. Jin, Y.N. Tan, Z. Quan, M.P. Li, B.O. Guan, Strain-insensitive temperature sensing with a dual polarization fiber grating laser. Opt. Express 20, 6021–6028 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61107087 and 61205063), the 863 High Technology Plan of China (2013AA010502), the National Basic Research Program of China (973 Program: 2010CB328305), and the Fundamental Research Funds for the Central Universities’, HUST: 2013TS052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Tang, M., Fu, S. et al. All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing. Appl. Phys. B 112, 491–497 (2013). https://doi.org/10.1007/s00340-013-5634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5634-8

Keywords

Navigation