Skip to main content
Log in

Influence of the size, geometry and temporal response of the finite piezoelectric sensor on the photoacoustic signal: the case of the point-like source

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Most photoacoustic (PA) work assumes a point-like detection of generated pressure waves; this assumption results in important differences between predicted and experimental signals, as shown in this paper. We used the geometry of a real sensor in the theoretical signal generation through the discretization of the sensing surface, considering each element as a point-like sensor. We modeled the interaction between the wavefront and the real sensor, starting from a well-known PA pressure relation for a point-like source and punctual detection. We obtained the electrical response of the real sensor experimentally and modeled it as a summation of Gaussian functions. The impulse response was convolved with the total PA pressure to obtain the theoretical PA signal. We analyzed the dependence of the source-sensor distance on the discretization size. Then the predicted signal and experimental data were compared for two different frequency response transducers. We found differences in shape and temporal width of simulated PA signals for point-like-source/punctual-detection model and for point-like-source/finite-sensor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Wang, Photoacoustic imaging and spectroscopy (Taylor & Francis, New York, 2009)

    Book  Google Scholar 

  2. R. Pérez-Solano, F.I. Ramírez-Pérez, J.A. Castorena-González, E. Alvarado-Anell, G. Gutiérrez-Juárez, L. Polo-Parada, AIP Adv. 2, 011102 (2012)

    Article  ADS  Google Scholar 

  3. G. Gutiérrez-Juárez, S.K. Gupta, M. Al-Shaer, L. Polo-Parada, S.D. Paul, C. Papagiorgio, J.A. Viator, Lasers Surg. Med. 42, 271 (2010)

    Article  Google Scholar 

  4. G. Gutiérrez-Juárez, S.K. Gupta, L. Polo-Parada, P.D. Dale, C. Papagiorgio, J.D. Bunch, J.A. Viator, Int. J. Thermophys. 31, 784 (2010)

    Article  ADS  Google Scholar 

  5. M. Xu, L.V. Wang, Rev. Sci. Instrum. 77, 041101 (2006)

    Article  ADS  Google Scholar 

  6. B.T. Cox, B.E. Treeby, Proc. SPIE 7564, 75640I (2010)

    Article  ADS  Google Scholar 

  7. R. Nuster, S. Gratt, K. Passler, G. Paltauf, H. Grün, Th. Berer, P. Burgholzer, Proc. SPIE 7177, 71770T (2009)

    Article  Google Scholar 

  8. M. Hejazi, M.D. Abolhassani, A. Ahmadian, M. Frenz, M. Jaeger, J.J. Niederhauser, A. Amjadi, Arch. Med. Res. 37, 322 (2006)

    Article  Google Scholar 

  9. T.L. Szabo, P.A. Lewin, J. Ultras Med. 26, 283 (2007)

    Google Scholar 

  10. H. Schoeffmann, H. Schmidt-Kloiber, E. Reichel, J. Appl. Phys. 63, 46 (1988)

    Article  ADS  Google Scholar 

  11. G. Paltauf, H. Schmidt-Kloiber, H. Guss, Appl. Phys. Lett. 69, 1526 (1996)

    Article  ADS  Google Scholar 

  12. M. Frenz, G. Paltauf, H. Schmidt-Kloiber, Phys. Rev. Lett. 76, 3546 (1996)

    Article  ADS  Google Scholar 

  13. L.V. Wang, X. Yang, J. Biomed. Opt. 12, 14027 (2007)

    Article  Google Scholar 

  14. V.G. Andreev, A.A. Karabutov, A.A. Oraevsky, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 50, 1383 (2003)

    Article  Google Scholar 

  15. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  ADS  Google Scholar 

  16. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998)

    Google Scholar 

  17. G. Paltauf, H. Schmidt-Kloiber, J. Appl. Phys. 82, 1525 (1997)

    Article  ADS  Google Scholar 

  18. G.M. Sessler, J. Acoust. Soc. Am. 70, 1596 (1981)

    Article  ADS  Google Scholar 

  19. R.A. Kruger, D.R. Reinecke, G.A. Kruger, Med. Phys. 26, 1832 (1998)

    Article  Google Scholar 

  20. C. Zhang, K. Maslov, J. Yao, L.V. Wang, J. Biomed. Opt. 17, 116016 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Dirección de Apoyo a la Investigación y al Posgrado (DAIP) of the Universidad de Guanajuato. The authors want to thank Joaquín Peña Acevedo, Ph. D., for his helpful comments and suggestions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gutiérrez-Juárez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo-Miranda, C.A., González-Vega, A. & Gutiérrez-Juárez, G. Influence of the size, geometry and temporal response of the finite piezoelectric sensor on the photoacoustic signal: the case of the point-like source. Appl. Phys. B 115, 471–482 (2014). https://doi.org/10.1007/s00340-013-5627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5627-7

Keywords

Navigation