Skip to main content
Log in

TITAN: an ion trap for accurate mass measurements of ms-half-life nuclides

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The introduction of Paul traps, in particular linear radio-frequency quadrupoles in the early 2000s, has revolutionized the use of ion traps for probing the properties of radioactive nuclides. It opened the path to trapping all available nuclides, independent of their chemical properties. We present an overview of direct mass measurements of short-lived nuclides using TITAN, a Penning trap mass spectrometer facility particularly suitable for precision measurements of ms-half-life nuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. All of the half-lives mentioned in this article are taken from [26].

References

  1. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  2. D. Lunney et al., Rev. Mod. Phys. 75, 1021 (2003)

    Article  ADS  Google Scholar 

  3. H. Schatz, Int. J. Mass Spectrom. 251, 293 (2006)

    Article  ADS  Google Scholar 

  4. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T 152, 014017 (2013)

    Article  ADS  Google Scholar 

  5. Wolfgang Paul—Nobel Lecture: Electromagnetic Traps for Charged and Neutral Particles, Nobel Lectures in Physics 1981–1990 (World Scientific Publishing Co., Singapore, 1993)

  6. F. Herfurth et al., Nucl. Instrum. Methods Phys. Res. Sect. A 469, 254 (2001)

    Article  ADS  Google Scholar 

  7. T. Brunner et al., Nucl. Instrum. Methods Phys. Res. Sect. A 676, 32 (2012)

    Article  ADS  Google Scholar 

  8. K. Blaum, Y.N. Novikov, G. Werth, Contemp. Phys. 51(2), 149 (2010)

    Article  ADS  Google Scholar 

  9. I. Tanihata, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4067 (2008)

    Article  ADS  Google Scholar 

  10. Y. Blumenfeld, T. Nilsson, P. Van Duppen, Phys. Scr. T 152, 014023 (2013)

    Article  ADS  Google Scholar 

  11. M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008)

    Article  ADS  Google Scholar 

  12. G. Savard et al., Int. J. Mass Spectrom. 251, 252 (2006)

    Article  ADS  Google Scholar 

  13. M. Block et al., Eur. Phys. J. D 45, 39 (2007)

    Article  ADS  Google Scholar 

  14. V.S. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. Sect. A 528, 776 (2004)

    Article  ADS  Google Scholar 

  15. R. Ringle et al., Nucl. Instrum. Methods Phys. Res. Sect. A 604, 536 (2009)

    Article  ADS  Google Scholar 

  16. J. Dilling et al., Int. J. Mass Spectrom. 251, 198 (2006)

    Article  ADS  Google Scholar 

  17. J. Ketelaer et al., Nucl. Instrum. Methods Phys. Res. Sect. A 594, 162 (2008)

    Article  ADS  Google Scholar 

  18. T. Eronen et al., Phys. Rev. C 79, 032802(R) (2009)

    Article  ADS  Google Scholar 

  19. S. Rainville et al., Nature 438, 1096 (2005)

    Article  ADS  Google Scholar 

  20. M. Brodeur et al., Phys. Rev. Lett. 108, 052504 (2012)

    Article  ADS  Google Scholar 

  21. E. Minaya Ramirez et al., Science 337, 1207 (2012)

    Article  ADS  Google Scholar 

  22. M. Smith et al., Phys. Rev. Lett. 101, 202501 (2008)

    Article  ADS  Google Scholar 

  23. A. Kellerbauer et al., Phys. Rev. Lett. 93, 072502 (2004)

    Article  ADS  Google Scholar 

  24. S. Naimi et al., Phys. Rev. C 86, 014325 (2012)

    Article  ADS  Google Scholar 

  25. M. Wang et al., Chin. Phys. C 36, 1603 (2012)

    Article  ADS  Google Scholar 

  26. J.K. Tuli, Nuclear wallet cards http://www.nndc.bnl.gov (2005)

  27. M.C. Simon et al., Rev. Sci. Instrum. 83, 02A912 (2012)

    Article  Google Scholar 

  28. V.V. Simon et al., J. Phys. Conf. Ser. 312, 052024 (2011)

    Article  ADS  Google Scholar 

  29. M. Dombsky et al., Rev. Sci. Instrum. 71, 978 (2000)

    Article  ADS  Google Scholar 

  30. R. Kirchner et al., Nucl. Instrum. Methods 133(2), 187 (1976)

    Article  ADS  Google Scholar 

  31. K. Jayamanna et al., Rev. Sci. Instrum. 67, 1061 (1996)

    Article  ADS  Google Scholar 

  32. N.W. McLachlan, Theory and Applications of Mathieu Functions. (Clarendon, Oxford, 1947)

    Google Scholar 

  33. M. Drewsen, A. Brøner, Phys. Rev. A 62, 045401 (2000)

    Article  ADS  Google Scholar 

  34. N.V. Konenkov et al., J. Am. Soc. Mass Spectrom. 13, 597 (2002)

    Article  Google Scholar 

  35. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  36. M. König et al., Int. J. Mass Spectrom. 142, 95 (1995)

    Article  ADS  Google Scholar 

  37. G. Bollen et al., J. Appl. Phys. 68, 4355 (1990)

    Article  ADS  Google Scholar 

  38. G. Bollen, Nucl. Phys. A 693, 3 (2001)

    Article  ADS  Google Scholar 

  39. G. Savard et al., Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  40. R. Ringle et al., Int. J. Mass Spectrom. 263, 38 (2007)

    Article  ADS  Google Scholar 

  41. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

  42. T. Baumann et al., Nature 449, 1022 (2007)

    Article  ADS  Google Scholar 

  43. R. Sanchez et al., Phys. Rev. Lett. 96, 033002 (2006)

    Article  ADS  Google Scholar 

  44. T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006)

    Article  ADS  Google Scholar 

  45. S. Ettenauer et al., Phys. Rev. C 81, 024314 (2010)

    Article  ADS  Google Scholar 

  46. A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)

    Article  ADS  Google Scholar 

  47. M.F. Jager et al., Phys. Rev. C 86, 011304(R) (2012)

    Article  ADS  Google Scholar 

  48. E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990)

    Article  ADS  Google Scholar 

  49. W. Plaß et al., Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4560 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the National Research Council (NRC) of Canada. T.B. acknowledges support from evangelisches Studienwerk e.V. Villigst, A.T.G. acknowledges from the NSERC CGS-D program, T.D.M. from the NSERC CGS-M program, A. L. from the Deutsche Forschungsgemeinschaft (DFG) under Grant no. FR 601/3-1, S.E. from the Vanier CGS program, and V.V.S. from the Studienstiftung des deutschen Volkes. We thank M. Good for providing technical support for the TITAN experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, A., Andreoiu, C., Brodeur, M. et al. TITAN: an ion trap for accurate mass measurements of ms-half-life nuclides. Appl. Phys. B 114, 99–105 (2014). https://doi.org/10.1007/s00340-013-5618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5618-8

Keywords

Navigation