Applied Physics B

, Volume 115, Issue 3, pp 413–418 | Cite as

Broadly tunable quantum cascade laser in cantilever-enhanced photoacoustic infrared spectroscopy of solids

  • J. Lehtinen
  • T. Kuusela


An external cavity quantum cascade laser (EC-QCL) is applied in the photoacoustic detection of solid samples. The EC-QCL used has a broad tuning range of 676 cm−1 (970–1,646 cm−1) in the mid-infrared region, which enables accurate broadband spectroscopy of large molecules. The high spectral power density of the EC-QCL is combined with an extremely sensitive optical cantilever microphone of the photoacoustic detector to achieve an ultimate sensitivity. The carbon black, polyethylene, and hair fiber samples were measured with the EC-QCL photoacoustic detection using electrical amplitude modulation to demonstrate the possibilities of the setup. The same measurements were repeated with a Fourier transform infrared (FTIR) spectrometer combined with a photoacoustic detector for a comparison. The EC-QCL photoacoustic setup yielded roughly a decade better signal-to-noise ratios than the FTIR setup with the same measurement time.


Tuning Range Quantum Cascade Laser Laser Output Power Photoacoustic Signal FTIR Instrument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Hugi, R. Maulini, J. Faist, Semicond. Sci. Technol. 25, 083001 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R.F. Curl, Appl. Phys. B 90, 165 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    J. Coates, BioPhotonics 17 (2010), Accessed 9 Aug 2013
  5. 5.
    V. Spagnolo, A.A. Kosterev, L. Dong, R. Lewicki, F.K. Tittel, Appl. Phys. B 100, 125 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    C.B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, R.L. Keiski, Appl. Phys. B 111, 603 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    J. Kottmann, J.M. Rey, J. Luginbuhl, E. Reichmann, M.W. Sigrist, Biomed. Opt. Express 3, 667 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Kottmann, J.M. Rey, M.W. Sigrist, Rev. Sci. Instrum. 82, 084903 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Q. Wen, K.H. Michaelian, Opt. Lett. 33, 1875 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M. Dehghany, K.H. Michaelian, Rev. Sci. Instrum. 83, 064901 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    E.L. Holthoff, L.S. Marcus, P.M. Pellegrino, Appl. Spectrosc. 66, 987 (2012)CrossRefGoogle Scholar
  12. 12.
    J.F. McClelland, R.W. Jones, S.J. Bajic, in FT-IR Photoacoustic Spectroscopy, ed. by J.M. Chalmers, P.R Griffiths. Handbook of Vibrational Spectroscopy (Wiley, Hoboken, New Jersey, 2002)Google Scholar
  13. 13.
    R.E. Lindley, A.M. Parkes, K.A. Keen, E.D. McNaghten, A.J. Orr-Ewing, Appl. Phys. B 86, 707 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J. Lehtinen, Int. J. Thermophys. (2013). doi:  10.1007/s10765-013-1488-x
  15. 15.
    J. Strassburger, M.M. Breuer, J. Soc. Cosmet. Chem. 36, 61 (1985)Google Scholar
  16. 16.
    J.-L. Bantignies, G.I. Carr, D. Lutz, S. Marull, G.P. Williams, G. Fuchs, J. Cosmet. Sci. 51, 73 (2000)Google Scholar
  17. 17.
    Z. Movasaghi, S. Rehman, I.U. Rehman, Appl. Spectrosc. Rev. 43, 134 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    A. Barth, C. Zscherp, Q. Rev. Biophys. 35, 369 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory of Optics and Spectroscopy, Department of Physics and AstronomyUniversity of TurkuTurkuFinland

Personalised recommendations