Skip to main content
Log in

Thermal lens spectrometry under excitation of a divergent pump beam

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Thermal lens spectrometry (TLS) under excitation of a divergent pump beam is discussed in both conventional and microscopic TLS instruments. A refined thermal lens (TL) model was proposed for calculating the TL signal of a “finite TL element.” Experiments as well as comparison with numerical simulations demonstrated that the effective sample length for a certain pump beam profile was about six times the confocal distance of the pump beam for laser-excited case and 1.5 mm for incoherent light source-excited case. For laser-excited conventional TLS instrument or thermal lens microscope (TLM), an empirical formula of the optimum pump beam waist radius for maximum detection sensitivity was obtained at a given sample length. At larger pump beam waist radius of 7 μm, the TL signal was found 2.5 times lower compared to the diffraction limit; however, the resulting two orders of magnitude lower power density in the sample could be quite desirable for the detection of photolabile analytes. By investigating the influence of a finite TL element on the TL signal, we found that an optimal distance between the probe beam waist and the sample was needed to assure the maximum detection sensitivity and good response linearity. Under the optimal detection scheme, limit of detection of the laser-excited TLM at 4 mW power was evaluated to be 8.6 × 10−9 M for 100-μm-thick ferroin solution, corresponding to an absorbance of 9.5 × 10−7 absorbance units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996)

    Google Scholar 

  2. M. Franko, C.D. Tran, in Thermal lens spectroscopy, ed. by R.A. Meyers. Encyclopedia of Analytical Chemistry (Wiley, Chichester, 2011), pp. 1249–1279

  3. N.G.C. Astrath, F.B.G. Astrath, J. Shen, J. Zhou, C.E. Gu, L.C. Malacarne, P.R.B. Pedreira, A.C. Bento, M.L. Baesso, Appl. Phys. B 94, 473 (2009)

    Article  ADS  Google Scholar 

  4. N.J. Dovichi, J.M. Harris, Anal. Chem. 53, 106 (1981)

    Article  Google Scholar 

  5. T. Kitamori, M. Tokeshi, A. Hibara, K. Sato, Anal. Chem. 76, 52A (2004)

    Article  Google Scholar 

  6. A. Smirnova, K. Mawatari, A. Hibara, M.A. Proskurnin, T. Kitamori, Anal. Chim. Acta 558, 69 (2006)

    Article  Google Scholar 

  7. J. Shen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385 (1992)

    Article  ADS  Google Scholar 

  8. L.C. Malacarne, N.G.C. Astrath, P.R.B. Pedreira, R.S. Mendes, M.L. Baesso, P.R. Joshi, S.E. Bialkowski, J. Appl. Phys. 107, 053104 (2010)

    Article  ADS  Google Scholar 

  9. N.G.C. Astrath, L.C. Malacarne, G.V.B. Lukasievicz, M.P. Belancon, M.L. Baesso, P.R. Joshi, S.E. Bialkowski, J. Appl. Phys. 107, 083512 (2010)

    Article  ADS  Google Scholar 

  10. S.E. Bialkowski, Anal. Chem. 58, 1706 (1986)

    Article  Google Scholar 

  11. R. Anraku, K. Mawatari, M. Tokeshi, M. Nara, T. Asai, A. Hattori, T. Kitamori, Electrophoresis 29, 1895 (2008)

    Article  Google Scholar 

  12. M.A. Proskurnin, M.N. Slyadnev, M. Tokeshi, T. Kitamori, Anal. Chim. Acta 480, 79 (2003)

    Article  Google Scholar 

  13. J. Georges, Talanta 48, 501 (1999)

    Article  Google Scholar 

  14. M. Liu, D. Korte, M. Franko, J. Appl. Phys. 111, 033109 (2012)

    Article  ADS  Google Scholar 

  15. M. Liu, M. Franko, Appl. Phys. Lett. 100, 121110 (2012)

    Article  ADS  Google Scholar 

  16. J. Alda, in Laser and Gaussian beam propagation and transformation. Encyclopedia of Optical Engineering (Marcel Dekker, Inc., New York, 2003), pp. 999–1013

Download references

Acknowledgments

We thank the Slovenian Research Agency for financial support through the research program Grant P1-0034 and the young researcher fellowship to M. Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Franko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Franko, M. Thermal lens spectrometry under excitation of a divergent pump beam. Appl. Phys. B 115, 269–277 (2014). https://doi.org/10.1007/s00340-013-5601-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5601-4

Keywords

Navigation