Advertisement

Applied Physics B

, Volume 115, Issue 2, pp 173–183 | Cite as

Laser-induced breakdown spectroscopy: technique, new features, and detection limits of trace elements in Al base alloy

  • H. HegazyEmail author
  • E. A. Abdel-Wahab
  • F. M. Abdel-Rahim
  • S. H. Allam
  • A. M. A. Nossair
Article

Abstract

Laser-induced breakdown spectroscopy (LIBS) has proven to be extremely versatile, providing multielement analysis in real time without sample preparation. The principle is based on the ablation of a small amount of target material by interaction of a strong laser beam with a solid target. The laser must have sufficient energy to excite atoms and to ionize them to produce plasma. We aimed to improve the LIBS limit of detection (LOD) and the precision of spectral lines emitted from the produced plasma by optimizing the parameters affecting the LIBS technique. LIBS LOD is affected by many experimental parameters such as interferences, self-absorption, spectral overlap, signal-to-noise ratio, and matrix effects. The plasma in the present study is generated by focusing a 6-ns pulsed Nd–YAG laser at the fundamental wavelength of 1,064 nm onto the Al target in air at atmospheric pressure. The emission spectra are recorded using an SE 200 Echelle spectrometer manufactured by the Catalina Corporation; it is equipped with an ICCD camera type Andor model iStar DH734-18. This spectrometer allows time-resolved spectral acquisition over the whole UV-NIR (200–1,000 nm) spectral range. Calibration curves for Cu, Mg, Mn, Si, Cr, and Fe were obtained with linear regression coefficients around 99 % on the average in aluminum standard alloy samples. The determined LOD has very useful improvements for Cu I at 521.85 nm, Si I at 288.15 nm, Mn I at 482.34 nm, and Cr I at 520.84 nm spectral lines. LOD is improved by 83.8 % for Cu, 49 % for Si, 84.3 % for Mn, and 45 % for Cr lower with respect to the previous works.

Keywords

Spectral Line Fundamental Wavelength ICCD Camera Direct Solid Sampling Analytical Calibration Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Authors deeply thanks Prof. H.-J. Kunze, EPV, Ruhr Universität Bochum, Germany whose advices, revising and discussions was invaluable and sincere thanks to Dr. Sintayehu Woldemariam Physics Department, Faculty of Science, Jazan University, Saudi Arabia for revising this manuscript.

References

  1. 1.
    L.J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation”, 1987–1994. Microchem. J. 50, 218–234 (1994)CrossRefGoogle Scholar
  2. 2.
    L.J. Radziemski, T.R. Loree, D.A. Cremers, N.M. Hoffman, Anal. Chem. 55, 1246 (1983)CrossRefGoogle Scholar
  3. 3.
    D.W. Hahn, W.L. Flower, K.R. Hencken, Appl. Spectrosc. 51, 1836–1844 (1997)CrossRefADSGoogle Scholar
  4. 4.
    W.T.Y. Mohamed, Quantitative elemental analysis of seawater by laser induced breakdown spectroscopy. Int. J. Pure Appl. Phys. 2(1), 11–21 (2006)Google Scholar
  5. 5.
    L.J. Radziemski, D.A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, Inc., New York, 1989)Google Scholar
  6. 6.
    K. Song, Y.-I. Lee, J. Sneddon, Recent developments in instrumentation for laser-induced breakdown spectroscopy. Appl. Spectrosc. Rev. 37, 89–117 (2002)CrossRefADSGoogle Scholar
  7. 7.
    E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim. Acta Part B 57, 1115–1130 (2002)CrossRefADSGoogle Scholar
  8. 8.
    D.A. Cremers, The Analysis of Metals at a Distance Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 41(4), 572 (1987)CrossRefADSGoogle Scholar
  9. 9.
    M. Sabsabi, V. Detalle, M.A. Harith, W. Tawfik, H. Imam, Comparative study of two new commercial Echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy. Appl. Opt. 42(30), 6094–6098 (2003)CrossRefADSGoogle Scholar
  10. 10.
    M.A. Ismail, H. Imam, A. Elhassan, W.T. Youniss, M.A. Harith, LIBS limit of detection and plasma parameters of some elements in two different metallic matrices. J. Anal. At. Spectrom. 19, 489–494 (2004)CrossRefGoogle Scholar
  11. 11.
    P. Fichet, A. Toussaint, J.F. Wagner, Laser-induced breakdown spectroscopy: a tool for analysis of different types of liquids. Appl. Phys. A 69, 591–592 (1999)CrossRefADSGoogle Scholar
  12. 12.
    P. Fichet, P. Mauchien, J.F. Wagner, C. Moulin, Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy. Anal. Chim. Acta 42(9), 269–278 (2001)CrossRefGoogle Scholar
  13. 13.
    D.A. Rusak, B.C. Castle, B.W. Smith, J.D. Winefordner, Fundamentals and applications of laser-induced breakdown spectroscopy. Crit. Rev. Anal. Chem. 27, 257–290 (1997)CrossRefGoogle Scholar
  14. 14.
    J. Sneddon, Y.-I. Lee, Novel and recent applications of elemental determination by laser-induced breakdown spectrometry. Anal. Lett. 32, 2143–2162 (1999)CrossRefGoogle Scholar
  15. 15.
    V. Majidi, M.R. Joseph, Spectroscopic applications of laser-induced plasmas. Crit. Rev. Anal. Chem. 23, 143–162 (1992)CrossRefGoogle Scholar
  16. 16.
    A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, Trace pollutants analyses in soil by a time-resolved laser induced breakdown spectroscopy technique. Appl. Phys. B 63, 185–190 (1996)CrossRefADSGoogle Scholar
  17. 17.
    A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, A new procedure for quantitative elemental analyses by laser induced plasma spectroscopy. Appl. Spectrosc. 53, 960–964 (1999)CrossRefADSGoogle Scholar
  18. 18.
    M. Sabsabi, P. Cielo, Appl. Spectrosc. 49(4), 499–507 (1995)CrossRefADSGoogle Scholar
  19. 19.
    E.H. Piepmeier, Laser Ablation for Atomic Spectroscopy, Analytical Application of Laser (Wiley, New York, 1986)Google Scholar
  20. 20.
    H.E. Bauer, F. Leis, K. Niemax, Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection. Spectrochim. Acta Part B 53, 1815–1825 (1998)CrossRefADSGoogle Scholar
  21. 21.
    R.E. Russo, X.L. Mao, Chemical analysis by laser ablation, in Laser Experimental Ablation and Desorption, ed. by J.C. Miller, R.F. Haglund (Academic Press, San Diego, 1998), p. 375Google Scholar
  22. 22.
    K.Y. Yamamoto, D.A. Cremers, M.J. Ferris, L.E. Foster, Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument. Appl. Spectrosc. 50, 222–233 (1996)CrossRefADSGoogle Scholar
  23. 23.
    B.C. Castle, K. Talabardon, B.W. Smith, J.D. Winefordner, Variables influencing the precision of laser-induced breakdown spectroscopy measurements. Appl. Spectrosc. 52, 649–657 (1998)CrossRefADSGoogle Scholar
  24. 24.
    Y.F. Yueh, J.P. Singh, H. Zhang, Laser-induced Breakdown Spectroscopy: Elemental Analysis, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2000), pp. 2066–2087Google Scholar
  25. 25.
    V. Bulatov, R. Krasniker, I. Schechter, Study of matrix effects in laser plasma spectroscopy by combined multi-fiber spatial and temporal resolutions. Anal. Chem. 70, 5302–5310 (1998)CrossRefGoogle Scholar
  26. 26.
    K.L. Eland, D.N. Stratis, D.M. Gold, S.R. Goode, S. Michael Angel, Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation. Appl. Spectrosc. 55, 286–291 (2001)CrossRefADSGoogle Scholar
  27. 27.
    A. Semerok, C. Chale´ard, V. Detalle, J.L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Salle´, P. Palianov, M. Perdrix, G. Petite, Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses. Appl. Surf. Sci. 138, 311–314 (1999)Google Scholar
  28. 28.
    L. Xu, V. Bulatov, V. Gridin, I. Schechter, Absolute analysis of particulate materials by laser-induced breakdown spectroscopy. Anal. Chem. 69, 2103–2108 (1997)CrossRefGoogle Scholar
  29. 29.
    S.R. Goode, S.L. Morgan, R. Hoskins, A. Oxsher, Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer. J. Anal. At. Spectrom. 15, 1133–1138 (2000)CrossRefGoogle Scholar
  30. 30.
    A.S. Eppler, D.A. Cremers, D.D. Hickmott, M.J. Ferris, A.C. Koskelo, Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy. Appl. Spectrosc. 50, 1175–1181 (1996)CrossRefADSGoogle Scholar
  31. 31.
    V.N. Raia, S.N. Thakurb, Physics of plasma in laser-induced breakdown spectroscopy, in Laser-Induced Breakdown Spectroscopy, ed. by J.P. Singh, S.N. Thakur (Elsevier press, Amsterdam, 2007)Google Scholar
  32. 32.
    D.A. Cremers, L.J. Radziemski, Anal. Chem. 55, 1252 (1983)CrossRefGoogle Scholar
  33. 33.
    J.B. Simeonsson, A.W. Miziolek, Appl. Opt. 32, 939 (1993)CrossRefADSGoogle Scholar
  34. 34.
    H.J. Kunze, Spectroscopy of Optically Thick Plasmas, 3rd Workshop on Plasma and Laser Technology, Ismailia Oct, 31, 3–7 (1993), ed. by Ph. Mertens (Forschungszentrum Juelich, GmbH, 1994) pp. 31–46Google Scholar
  35. 35.
    H. Hegazy, Oxygen spectral lines for diagnostics of atmospheric laser induced plasmas. Appl. Phys. B 98, 601–606 (2010)CrossRefADSGoogle Scholar
  36. 36.
    B. Le Drogoff, J. Margot, T.W. Johnston, M. Chaker, S. Laville, M. Sabsabi, F. Vidal, O. Barthelemy, Y. von Kaenel, Spectrochim. Acta Part B 56, 987–1002 (2001)CrossRefADSGoogle Scholar
  37. 37.
    W.T.Y. Mohamed, Opt. Laser Technol. 40, 30–38 (2008)CrossRefADSGoogle Scholar
  38. 38.
    H-K. Li, M. Liu, Z-J. Chen, R-H. Li, Trans. Nonferrous Met. Soc. China 18, 222–226 (2008) CrossRefGoogle Scholar
  39. 39.
    V. Detalle, R. Heon, M. Sabsabi, L. St-Onge, Spectrochim. Acta Part B At. Spectrosc. 56, 1011–1025 (2001)CrossRefADSGoogle Scholar
  40. 40.
    B. Nemet, L. Kozma, Spectrochim. Acta Part B 50, 1869–1888 (1995)CrossRefADSGoogle Scholar
  41. 41.
    D. Body, B.L. Chawick, Spectrochim. Acta Part B 56, 725–736 (2006)CrossRefADSGoogle Scholar
  42. 42.
    M.A. Ismail, S. Legnaioli, V. Palleschi, E. Tognoni, G. Cristofretti, L. Pardini, A. Salvetti, M.A. Harith, J. Anal. Bioanal Chem. 385, 316–325 (2006)CrossRefGoogle Scholar
  43. 43.
    M. Sabsabi, R. Heon, L. St-Onge, Spectrochim. Acta Part B 60, 1211–1216 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • H. Hegazy
    • 1
    • 2
    Email author
  • E. A. Abdel-Wahab
    • 3
  • F. M. Abdel-Rahim
    • 3
  • S. H. Allam
    • 4
  • A. M. A. Nossair
    • 3
  1. 1.Physics Department, Faculty of ScienceJazan UniversityJazanSaudi Arabia
  2. 2.Plasma Physics Department, NRCAtomic Energy AuthorityEnshassEgypt
  3. 3.Physics Department, Faculty of ScienceAl-Azhar UniversityAssiut BranchEgypt
  4. 4.Laboratory of Lasers and New Materials, Department of Physics, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations