Comparative study of in situ N2 rotational Raman spectroscopy methods for probing energy thermalisation processes during spin-exchange optical pumping

Abstract

Spin-exchange optical pumping (SEOP) has been widely used to produce enhancements in nuclear spin polarisation for hyperpolarised noble gases. However, some key fundamental physical processes underlying SEOP remain poorly understood, particularly in regards to how pump laser energy absorbed during SEOP is thermalised, distributed and dissipated. This study uses in situ ultra-low frequency Raman spectroscopy to probe rotational temperatures of nitrogen buffer gas during optical pumping under conditions of high resonant laser flux and binary Xe/N2 gas mixtures. We compare two methods of collecting the Raman scattering signal from the SEOP cell: a conventional orthogonal arrangement combining intrinsic spatial filtering with the utilisation of the internal baffles of the Raman spectrometer, eliminating probe laser light and Rayleigh scattering, versus a new in-line modular design that uses ultra-narrowband notch filters to remove such unwanted contributions. We report a ~23-fold improvement in detection sensitivity using the in-line module, which leads to faster data acquisition and more accurate real-time monitoring of energy transport processes during optical pumping. The utility of this approach is demonstrated via measurements of the local internal gas temperature (which can greatly exceed the externally measured temperature) as a function of incident laser power and position within the cell.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    The much larger differences between internal (gas) and external (wall/oven) temperatures measured in ref [19] likely reflect the much longer optical pumping times for those experiments (allowing more thermal energy to accumulate within the cell), as well as any gas mixture-dependent effects.

References

  1. 1.

    B.M. Goodson, J. Magn. Reson. 155, 157 (2002)

    Article  ADS  Google Scholar 

  2. 2.

    I. Dregely, J.P. Mugler III, I.C. Ruset, T.A. Altes, J.F. Mata, W. Miller, J. Ketel, S. Ketel, J. Distelbrink, F.W. Hersman, K. Ruppert, J. Magn. Reson. 33, 1052 (2011)

    Article  Google Scholar 

  3. 3.

    S. Sivaram Kaushik, Z.I. Cleveland, G.P. Cofer, G. Metz, D. Beaver, J. Nouls, M. Kraft, W. Auffermann, J. Wolber, H.P. McAdams, B. Driehuys, Magn. Reson. Med. 65, 1155 (2011)

    Google Scholar 

  4. 4.

    X. Xu, G. Norquay, S.R. Parnell, M.H. Deppe, S. Ajraoui, R. Hashoian, H. Marshall, P.D. Griffiths, J. Parra-Robles, J.M. Wild, Magn. Reson. Med. 68(6), 1900 (2012)

    Article  Google Scholar 

  5. 5.

    A. Nossov, E. Haddad, F. Guenneau, C. Mignon, A. Gedeon, D. Grosso, F. Babonneau, C. Bonhomme, C. Sanchez, Chem. Commun. 21, 2476 (2002)

    Article  Google Scholar 

  6. 6.

    G. Huber, L. Beguin, H. Desvaux, T. Brotin, H.A. Fogarty, J.P. Dutasta, P. Berthault, J. Phys. Chem. A 112(45), 11363 (2008)

    Article  Google Scholar 

  7. 7.

    T. Meldrum, K.L. Seim, V.S. Bajaj, K.K. Palaniappan, W. Wu, M.B. Francis, D.E. Wemmer, A. Pines, J. Am. Chem. Soc. 132(17), 5936 (2010)

    Article  Google Scholar 

  8. 8.

    Y.-Q. Song, B.M. Goodson, R.E. Taylor, D.D. Laws, G. Navon, A. Pines, Angew. Chem. Int. Ed. Engl. 36(21), 2368 (1997)

    Article  Google Scholar 

  9. 9.

    L. Dubois, P. Da Silva, C. Landon, J.G. Huber, M. Ponchet, F. Vovelle, P. Berthault, H. Desvaux, J. Am. Chem. Soc. 126(48), 15738 (2004)

    Article  Google Scholar 

  10. 10.

    R. T. Kouzes, U.S. Department of energy, PNNL-18388 (2009)

  11. 11.

    T.G. Walker, W. Happer, Rev. Mod. Phys. 69(2), 629 (1997)

    Article  ADS  Google Scholar 

  12. 12.

    N. Whiting, N.A. Eschmann, B.M. Goodson, M.J. Barlow, Phys. Rev. A 83, 053428 (2011)

    Article  ADS  Google Scholar 

  13. 13.

    P. Nikolaou, N. Whiting, N.A. Eschmann, K.E. Chaffee, B.M. Goodson, M.J. Barlow, J. Magn. Res. 197, 249 (2009)

    Article  ADS  Google Scholar 

  14. 14.

    N. Whiting, P. Nikolaou, N. Eschmann, M. Barlow, R. Lammer, J. Ungar, W. Hu, L. Vaissie, B. Goodson, Appl. Phys. B. 106, 775 (2012)

    Article  ADS  Google Scholar 

  15. 15.

    P. Nikolaou, A. Coffey, L. Walkup, B. Gust, N. Whiting, H. Newton, S. Barcus, I. Muradyan, M. Dabaghyan, G. D. Moroz, M. Rosen, S. Patz, M. J. Barlow, E. Chekmenev, and B. M. Goodson, Proc. Natl. Acad. Sci. USA (accepted) (2013)

  16. 16.

    P. Nikolaou, A. Coffey, L. Walkup, B. Gust, H. Newton, I. Muradyan, M. Rosen, S. Patz, M. J. Barlow, B. M. Goodson, and E. Chekmenev, presented at the 54th ENC, Pacific Grove, 2013

  17. 17.

    I. Saha, P. Nikolaou, N. Whiting, B.M. Goodson, Chem. Phys. Lett. 428, 268 (2006)

    Article  ADS  Google Scholar 

  18. 18.

    D.K. Walter, W.M. Griffith, W. Happer, Phys. Rev. Lett. 86, 3264 (2001)

    Article  ADS  Google Scholar 

  19. 19.

    N. Whiting, H. Newton, M. J. Barlow, P. Morris, and B. M. Goodson (manuscript in preparation) (2013)

  20. 20.

    N. Whiting, H. Newton, M. J. Barlow, P. Morris, and B. M. Goodson, Presented at the 53rd ENC, Miami, (2012)

  21. 21.

    S.R. Parnell, M.H. Deppe, S. Ajraoui, J. Parra-Roubles, S. Boag, J.M. Wild, J. Appl. Phys. 107, 094904 (2010)

    Article  ADS  Google Scholar 

  22. 22.

    A. Fink, D. Baumer, E. Brunner, Phys. Rev. A 72, 053411 (2005)

    Article  ADS  Google Scholar 

  23. 23.

    R.S. Hickman, L.H. Liang, Rev. Sci. Instrum. 43(5), 796 (1972)

    Article  ADS  Google Scholar 

  24. 24.

    C. Moser and F. Havermeyer, United States patent 8184285 (2012)

  25. 25.

    G.W. Faris, R.A. Copeland, Appl. Opt. 36(12), 2684 (1997)

    Article  ADS  Google Scholar 

  26. 26.

    D. A. Steck, “Rubidium 87 D line data,” available online at http://steck.us/alkalidata. Revision 2.1.4. (2010)

  27. 27.

    A.L. Zook, B.B. Adhyaru, C.R. Bowers, J. Magn. Reson. 159(2), 175 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank S. Fitzgerald, W. Twigger, R. Senghani, and A. Knowles (Horiba Jobin–Yvon) for experimental assistance and loan of equipment, as well as Prof. A. Compaan (U. of Toledo) for helpful discussions. H. Newton is funded by an EPSRC studentship. N. Whiting is an NSF International Research Fellow (OISE 0966393). B.M. Goodson is a Cottrell Scholar of Research Corporation. Work at Southern Illinois University Carbondale is supported by DoD CDMRP (W81XWH-12-1-0159/BC112431) and SIUC OSPA. M.J. Barlow acknowledges the School of Clinical Sciences, University of Nottingham and ESPRC grant EP/G003076/1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Barlow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Newton, H., Walkup, L.L., Whiting, N. et al. Comparative study of in situ N2 rotational Raman spectroscopy methods for probing energy thermalisation processes during spin-exchange optical pumping. Appl. Phys. B 115, 167–172 (2014). https://doi.org/10.1007/s00340-013-5588-x

Download citation

Keywords

  • Notch Filter
  • Raman Line
  • Raman Spectrometer
  • Alkali Metal Atom
  • Nuclear Spin Polarisation