Applied Physics B

, Volume 114, Issue 1–2, pp 231–241 | Cite as

A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock

  • Karsten Pyka
  • Norbert Herschbach
  • Jonas Keller
  • Tanja E. Mehlstäubler


We present a new setup to sympathetically cool 115In+ ions with 172Yb+ for optical clock spectroscopy. A first prototype ion trap made of glass-reinforced thermoset laminates was built, based on a design that minimizes axial micromotion and offers full control of the ion dynamics in all three dimensions. We detail the trap manufacturing process and the characterization of micromotion in this trap. A calibration of the photon-correlation spectroscopy technique demonstrates a resolution of 1.1 nm in motional amplitude of our measurements. With this method, we demonstrate a sensitivity to systematic clock shifts due to excess micromotion of \(|(\Updelta\nu/\nu)_{\rm mm}|=7.7\times10^{-20}\) along the direction of the spectroscopy laser beam. Owing to our on-board filter electronics on the ion trap chips, no rf phase shifts could be resolved at this level. We measured rf fields over a range of 400 μm along the ion trap axis and demonstrated a region of 70 μm where an optical frequency standard with a fractional inaccuracy of ≤1 × 10−18 due to micromotion can be operated.


Compensation Voltage Optical Clock Secular Frequency Trap Axis Optical Frequency Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Christian Tamm, Max Harlander, and Yves Colombe for fruitful discussions on ion trap technology and Kihwan Kim for providing SMD parts for preliminary tests. Ekkehard Peik and Kristijan Kuhlmann are thanked for a careful reading of the manuscript. This work was supported by DFG through QUEST and the EU through SIB04—Ion Clock. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.


  1. 1.
    C.W. Chou et al., Phys. Rev. Lett. 104, 070802 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    P.O. Schmidt et al., Science 309, 749–752 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    M. Roberts et al., Phys. Rev. Lett. 78, 1876–1879 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    N. Herschbach et al., Appl. Phys. B 107, 891–906 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    C. Champenois, Phys. Rev. A 81, 043410 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    D. J. Berkeland et al., J. Appl. Phys. 83, 5025–5033 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    S. Narayanan et al., J. Appl. Phys. 110, 114909 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    D.T.C. Allcock et al., Appl. Phys. B 107, 913–919 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Ibaraki et al., Appl. Phys. B 105, 219–223 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    G. Wilpers et al., Nat. Nanotechnol. 7, 572–576 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    B.L. Chuah et al., Opt. Express 21, 10632–10641 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    S. C. Doret et al., New J. Phys. 14, 073012 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Madsen et al., Appl. Phys. B 78, 639–651 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Home, A.M. Steane, Quantum Inform. Comput. 6, 5 (2006)Google Scholar
  15. 15.
    D. Stick et al., Nat. Phys. 2, 36–39 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Schulz et al., Fortschr. Phys. 54, 648–665 (2006)CrossRefGoogle Scholar
  17. 17.
    W.K. Hensinger et al., Appl. Phys. Lett. 88, 034101 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    D.R. Leibrandt et al., Quantum Inform. Comput. 9, 11 (2009)Google Scholar
  19. 19.
    U. Tanaka et al., J. Phys. B At. Mol. Opt. Phys. 42, 154006 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    C.E. Pearson et al., Phys. Rev. A 73, 032307 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Q.A. Turchette et al., Phys. Rev. A 61, 063418 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    N. Daniilidis et al., New J. Phys. 13, 013032 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    M.M. Schauer et al., Phys. Rev. A 79, 062705 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    B.C. Fawcett, M. Wilson, Atom. Data Nucl. Data Tables 47, 241 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    D. Das et al., Phys. Rev. A 72, 032506 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    W.W. Macalpine, R.O. Schildknecht, Proc. IRE 2099 (1959)Google Scholar
  27. 27.
    C.A. Schrama et al., Opt. Comm. 101, 32–36 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    E. Peik, PhD Thesis (Max-Planck-Institute for Quantum Optics, Garching, 1993)Google Scholar
  29. 29.
    M. S. Safronova et al., Phys. Rev. Lett. 107, 143006 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karsten Pyka
    • 1
  • Norbert Herschbach
    • 1
  • Jonas Keller
    • 1
  • Tanja E. Mehlstäubler
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations