Skip to main content
Log in

Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the evolution of the surface plasmon (SP) and waveguide mode (WM) as the core thickness is varied in InGaAs slab waveguides covered by metallic sub-wavelength slit arrays. By comparing transmission spectrum in the near-infrared region with numerical simulations, transmission dips were assigned to resonant excitations of either SPs or WMs. As the core thickness was smaller than the SP penetration depth, the resonance energy exhibits a blue shift, which scales with the field intrusion into the substrate region. For the core thickness of 400 nm supporting both the WM and SP, effective refractive index of the SP is almost constant due to the field decay within the InGaAs region, which is different to the case of the WM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, Berlin, 1998)

    Google Scholar 

  2. F.J. Garcia-Vidal, L. Martin-Moreno, Phys. Rev. B 66, 155412 (2002)

    Article  ADS  Google Scholar 

  3. J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, N.J. Halas, Phys. Rev. B 68, 205103 (2003)

    Article  ADS  Google Scholar 

  4. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  5. H. Gao, J.M. McMahon, M.H. Lee, J. Henzie, S.K. Gray, G.C. Schatz, T.W. Odom, Opt. Express 17, 2334 (2009)

    Article  ADS  Google Scholar 

  6. X. Dou, P.Y. Chung, P. Jiang, J. Dai, Appl. Phys. Lett. 100, 041116 (2012)

    Article  ADS  Google Scholar 

  7. M. Ishifuji, M. Mitsuishi, T. Miyashita, Chem. Commun. 9, 1058 (2008)

    Article  Google Scholar 

  8. R.E. Collin, Field theory of guided waves (Wiley, New York, 1991)

    MATH  Google Scholar 

  9. S.Y. Lin, E. Chow, V. Hietala, P.R. Villeneuve, J.D. Joannopoulos, Science 282, 274 (1998)

    Article  ADS  Google Scholar 

  10. G. Margheri, T. Del Rosso, S. Sottini, S. Trigari, E. Giorgetti, Opt. Express 16, 9869 (2008)

    Article  ADS  Google Scholar 

  11. A.V. Krasavin, A.V. Zayats, Opt. Express 18, 11791 (2010)

    Article  ADS  Google Scholar 

  12. R.G. Harrington, Time-harmonic electromagnetic fields, IEEE press series (Wiley, New York, 2001)

    Book  Google Scholar 

  13. F. Pigeon, Y. Jourlin, O. Parriaux, Thin Solid Films 394, 237 (2001)

    Article  Google Scholar 

  14. S.H. Kim, C.M. Lee, S.B. Sim, J.H. Kim, J.H. Choi, W.S. Han, K.J. Ahn, K.J. Yee, Opt. Express 20, 6365 (2012)

    Article  ADS  Google Scholar 

  15. R. Zia, A. Chandran, M. Brongersma, Opt. Lett. 30, 1473–1475 (2005)

    Article  ADS  Google Scholar 

  16. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, Phys. Rev. B 73, 035407 (2006)

    Article  ADS  Google Scholar 

  17. Z. Sun, X. Zuo, Plasmonics 6, 83 (2011)

    Article  Google Scholar 

  18. E.D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1997)

    Google Scholar 

  19. S. Adachi, Physical properties of III-V semiconductor compounds (Wiley, Weinheim, 1992)

    Book  Google Scholar 

  20. V. Lomakin, E. Michielssen, Phys. Rev. B 71, 235117 (2005)

    Article  ADS  Google Scholar 

  21. R. Ortuño, C. García-Meca, F.J. Rodríguez-Fortuño, J. Martí, A. Martínez, Opt. Express 18, 7893 (2010)

    Article  Google Scholar 

  22. [22] L. Rayleigh, Proc. R. Soc. London Ser. A 79, 399 (1907)

    Google Scholar 

  23. Y. Xie, A.R. Zakharian, J.V. Moloney, M. Mansuripur, Opt. Express 14, 6400 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grants funded by the Korean Government (Basic Science Research Program: 2012-000968, 2012 University-Institute cooperation program, SRC: 2008-0062254). SKN acknowledges the NRF of Korea through a grant provided by MEST in 2007 (No. 2007-00011). K J. Ahn acknowledges supports from the Global Frontier R&D Program on Center for Multiscale Energy System (2012M3A6A7054864).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Lee, C.M., Park, D.W. et al. Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide. Appl. Phys. B 115, 77–83 (2014). https://doi.org/10.1007/s00340-013-5575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5575-2

Keywords

Navigation