Skip to main content
Log in

Comparison of loading double-loop microtraps from a surface MOT and a FORT

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two methods to load a microtrap consisting of two concentric microwire loops of radii 300 and 660 μm carrying oppositely oriented currents are demonstrated. Atoms can be directly loaded into the microtrap from a surface magneto-optical trap or alternatively using a far-off resonance optical dipole trap (FORT) as an intermediate step. About 1 × 105 87Rb atoms can be loaded into the microtrap using either technique although the FORT achieves a lower temperature. The FORT is well suited to loading a linear array of 3 microtraps that are aligned with the propagation direction of the infrared laser. Atoms can be trapped in either the \(5S_{1/2}\;F=1\) or 2 ground state hyperfine level. The position of the microtrapped atom cloud can be precisely adjusted using a bias magnetic field over a distance of 350 to slightly <50 μm from the atom chip surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.D. Weinstein, K.G. Libbrecht, Phys. Rev. A 52, 4004 (1995)

    Article  ADS  Google Scholar 

  2. R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002)

    Article  ADS  Google Scholar 

  3. J. Fortágh, C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  4. D. Cano, H. Hattermann, B. Kasch, C. Zimmermann, R. Kleiner, D. Koelle, J. Fortágh, Eur. Phys. J. D 63, 17 (2011)

    Article  ADS  Google Scholar 

  5. M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D.P. Kern, T.E. Judd, A. Gunther, J. Fortagh, Nat. Nano. 6, 446 (2011)

    Article  Google Scholar 

  6. Y.-J. Wang, D.Z. Anderson, V.M. Bright, E.A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R.A. Saravanan, S.R. Segal, S. Wu, Phys. Rev. Lett. 94, 090405 (2005)

    Article  ADS  Google Scholar 

  7. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Nature 450, 272 (2007)

    Article  ADS  Google Scholar 

  8. P. Treutlein, P. Hommelhoff, T. Steinmetz, T.W. Hänsch, J. Reichel, Phys. Rev. Lett. 92, 203005 (2004)

    Article  ADS  Google Scholar 

  9. B. Jian, W.A. van Wijngaarden, J. Opt. Soc. Am. B 30, 238 (2013)

    Article  ADS  Google Scholar 

  10. J. Reichel, Appl. Phys. B 74, 469 (2002)

    Article  ADS  Google Scholar 

  11. J. Reichel, W. Hänsel, T.W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999)

    Article  ADS  Google Scholar 

  12. B. Lu, W.A. van Wijngaarden, Can. J. Phys. 82, 81 (2004)

    Article  ADS  Google Scholar 

  13. D.A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, J. Schmiedmayer, Opt. Express 19, 8471 (2011)

    Article  ADS  Google Scholar 

  14. C.F. Ockeloen, A.F. Tauschinsky, R.J.C. Spreeuw, S. Whitlock, Phys. Rev. A 82, 061606 (2010)

    Article  ADS  Google Scholar 

  15. K.M. O’Hara, M.E. Gehm, S.R. Granade, J.E. Thomas, Phys. Rev. A 64, 051403 (2001)

    Article  ADS  Google Scholar 

  16. S.J.M. Kuppens, K.L. Corwin, K.W. Miller, T.E. Chupp, C.E. Wieman, Phys. Rev. A 62, 013406 (2000)

    Article  ADS  Google Scholar 

  17. W. Petrich, M.H. Anderson, J.R. Ensher, E.A. Cornell, Phys. Rev. Lett. 74, 3352 (1995)

    Article  ADS  Google Scholar 

  18. C.S. Adams, H.J. Lee, N. Davidson, M. Kasevich, S. Chu, Phys. Rev. Lett. 74, 3577 (1995)

    Article  ADS  Google Scholar 

  19. M.D. Barrett, J.A. Sauer, M.S. Chapman, Phys. Rev. Lett. 87, 010404 (2001)

    Article  ADS  Google Scholar 

  20. J. van Dongen, Z. Hu, D. Clement, G. Dufour, J.L. Booth, K.W. Madison, Phys. Rev. A 84, 022708 (2011)

    Article  ADS  Google Scholar 

  21. T. Esslinger, I. Bloch, T.W. Hänsch, Phys. Rev. A 58, R2664 (1998)

    Article  ADS  Google Scholar 

  22. W.A. van Wijngaarden, Can. J. Phys. 83, 671 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Canadian Natural Science and Engineering Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. van Wijngaarden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jian, B., van Wijngaarden, W.A. Comparison of loading double-loop microtraps from a surface MOT and a FORT. Appl. Phys. B 115, 61–67 (2014). https://doi.org/10.1007/s00340-013-5573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5573-4

Keywords

Navigation