Skip to main content
Log in

Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two-photon laser-induced fluorescence (LIF) of ammonia (NH3) with excitation of the C′-X transition at 304.8 nm and fluorescence detection in the 565 nm C′-A band has been investigated, targeting combustion diagnostics. The impact of laser irradiance, temperature, and pressure has been studied, and simulation of NH3-spectra, fitted to experimental data, facilitated interpretation of the results. The LIF-signal showed quadratic dependence on laser irradiance up to 2 GW/cm2. Stimulated emission, resulting in loss of excited molecules, is induced above 10 GW/cm2, i.e., above irradiances attainable for LIF imaging. Maximum LIF-signal was obtained for excitation at the 304.8 nm bandhead; however, lower temperature sensitivity over the range 400–700 K can be obtained probing lines around 304.9 nm. A decrease in fluorescence signal was observed with pressure up to 5 bar absolute and attributed to collisional quenching. A detection limit of 800 ppm, at signal-to-noise ratio 1.5, was identified for single-shot LIF imaging over an area of centimeter scale, whereas for single-point measurements, the technique shows potential for sub-ppm detection. Moreover, high-quality NH3-imaging has been achieved in laminar and turbulent premixed flames. Altogether, two-photon fluorescence provides a useful tool for imaging NH3-detection in combustion diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Parikka, Biomass Bioenergy 27, 613–620 (2004)

    Article  Google Scholar 

  2. M. Balat, Energy Source Part A 31, 1160–1173 (2009)

    Article  ADS  Google Scholar 

  3. A.M. Dean, J.W. Bozzeli, in Gas-phase Combustion Chemistry, ed. by W. C. Gardiner Jr. (Springer, New York, 2000), pp. 125–343

  4. P. Glarborg, A.D. Jensen, J.E. Johnsson, Prog. Energy Combust. 29, 89–113 (2003)

    Article  Google Scholar 

  5. A. Williams, J.M. Jones, L. Ma, M. Pourkashanian, Prog. Energy Combust. 38, 113–137 (2012)

    Article  Google Scholar 

  6. C. Duynslaegher, F. Contino, J. Vandooren, H. Jeanmart, Combust. Flame 159, 2799–2805 (2012)

    Article  Google Scholar 

  7. C. Duynslaegher, H. Jeanmart, J. Vandooren, Fuel 89, 3540–3545 (2010)

    Article  Google Scholar 

  8. L.J. Muzio, G.C. Quartucy, Prog. Energy Combust. Sci. 23, 233–266 (1997)

    Article  Google Scholar 

  9. K. Kohse-Höinghaus, J.B. Jeffries, in Applied Combustion Diagnostics, (Taylor&Francis, New York, 2002)

  10. A.P. Force, D.K. Killinger, W.E. Defeo, N. Menyuk, Appl. Optics 24, 2837–2841 (1985)

    Article  ADS  Google Scholar 

  11. W. Meienburg, H. Neckel, J. Wolfrum, Appl. Phys. B-Photo 51, 94–98 (1990)

    Article  ADS  Google Scholar 

  12. W. Meienburg, J. Wolfrum, H. Neckel, Twenty-Third Symposium on Combustion/The Combustion Institute 23, 231-236 (1990)

  13. B.M. Cheng, H.C. Lu, H.K. Chen, M. Bahou, Y.P. Lee, A.M. Mebel, L.C. Lee, M.C. Liang, Y.L. Yung, Astrophys. J. 647, 1535–1542 (2006)

    Article  ADS  Google Scholar 

  14. S. Koda, P.A. Hackett, R.A. Back, Chem. Phys. Lett. 28, 532–533 (1974)

    Article  ADS  Google Scholar 

  15. S.G. Buckley, C.J. Damm, W.M. Vitovec, L.A. Sgro, R.F. Sawyer, C.P. Koshland, D. Lucas, Appl. Optics 37, 8382–8391 (1998)

    Article  ADS  Google Scholar 

  16. U. Westblom, M. Aldén, Appl. Spectrosc. 44, 881–886 (1990)

    Article  ADS  Google Scholar 

  17. K. Nyholm, R. Fritzon, N. Georgiev, M. Aldén, Opt. Commun. 114, 76–82 (1995)

    Article  ADS  Google Scholar 

  18. M.N.R. Ashfold, I.W. Chandler, C.C. Hayden, R.I. Mckay, A.J.R. Heck, Chem. Phys. 201, 237–244 (1995)

    Article  ADS  Google Scholar 

  19. N. Georgiev, M. Aldén, Appl. Phys. B-Photo 56, 281–286 (1993)

    Article  ADS  Google Scholar 

  20. Z.S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X.S. Bai, M. Aldén, P Combust. Inst. 31, 727–735 (2007)

    Article  Google Scholar 

  21. Z.S. Li, M. Afzelius, J. Zetterberg, M. Aldén, Rev. Sci. Instrum. 75, 3208–3215 (2004)

    Article  ADS  Google Scholar 

  22. C.M. Western, PGOPHER, A program for simulating rotational structure, (University of Bristol, Bristol, UK, 2010). http://pgopher.chm.bris.ac.uk

  23. M.N.R. Ashfold, C.L. Bennett, R.N. Dixon, P. Fielden, H. Rieley, R.J. Stickland, J. Mol. Spectrosc. 117, 216–227 (1986)

    Article  ADS  Google Scholar 

  24. M. Nolde, K.M. Weitzel, C.M. Western, Phys. Chem. Chem. Phys. 7, 1527–1532 (2005)

    Article  Google Scholar 

  25. M.N.R. Ashfold, R.N. Dixon, N. Little, R.J. Stickland, C.M. Western, J. Chem. Phys. 89, 1754–1761 (1988)

    Article  ADS  Google Scholar 

  26. M.N.R. Ashfold, C.L. Bennett, R.N. Dixon, Faraday Discuss. 82, 163–175 (1986)

    Article  Google Scholar 

  27. M.N.R. Ashfold, C.L. Bennett, R.N. Dixon, Chem. Phys. 93, 293–306 (1985)

    Article  ADS  Google Scholar 

  28. M. Radojevic, Environ. Pollut. 102, 685–689 (1998)

    Article  Google Scholar 

  29. R.K. Lyon, Environ. Sci. Technol. 21, 231–236 (1987)

    Article  ADS  Google Scholar 

  30. R. Hemberger, S. Muris, K.U. Pleban, J. Wolfrum, Combust. Flame 99, 660–668 (1994)

    Article  Google Scholar 

  31. I. Glassman, Combustion, 3rd edn. (Academic Press, San Diego, 1996)

    Google Scholar 

  32. K. Kohse-Höinghaus, Prog. Energ. Combust. 20, 203–279 (1994)

    Article  Google Scholar 

  33. A.J. Reiter, S.C. Kong, Fuel 90, 87–97 (2011)

    Article  Google Scholar 

  34. J. McGinty, J. Requejo-Isidro, I. Munro, C.B. Talbot, P.A. Kellett, J.D. Hares, C. Dunsby, M.A.A. Neil, P.M.W. French, J. Phys. D Appl. Phys. 42, 1–9 (2009)

    Article  Google Scholar 

  35. J. Kiefer, Z.S. Li, J. Zetterberg, X.S. Bai, M. Aldén, Combust. Flame 154, 802–818 (2008)

    Article  Google Scholar 

  36. Z.S. Li, B. Li, Z.W. Sun, X.S. Bai, M. Aldén, Combust. Flame 157, 1087–1096 (2010)

    Article  Google Scholar 

  37. M. Østberg, K. Dam-Johansen, J.E. Johnsson, Chem. Eng. Sci. 52, 2511–2525 (1997)

    Article  Google Scholar 

  38. G.-W. Lee, B.-H. Shon, J.-G. Yoo, J.-H. Jung, K.-J. Oh, J. Ind. Eng. Chem. 14, 457–467 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financed by SSF (Swedish Foundation for Strategic Research), the Swedish Energy Agency through CECOST (Centre for Combustion Science and Technology), Swedish–Chinese collaboration project (Project No. 33305-1), VR (Swedish Research Council), and the European Research Council Advanced Grant DALDECS. Odd Hole thanks for financial support provided by Scania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brackmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brackmann, C., Hole, O., Zhou, B. et al. Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics. Appl. Phys. B 115, 25–33 (2014). https://doi.org/10.1007/s00340-013-5568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5568-1

Keywords

Navigation