Skip to main content

Advertisement

Log in

Near-field optical properties of wide bandwidth metal multi-layer dielectric gratings for pulse compressor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Metal multi-layer dielectric gratings (MMDG) for pulse compressors in high-energy laser systems should provide broad bandwidth as well as high laser-induced damage thresholds. The non-uniform optical near-field distribution of MMDG is an important factor that limits damage resistant capabilities. MMDG for pulse compressors operating at 800 nm with a corrugated SiO2 layer are designed by using a genetic algorithm and the Fourier mode method. The diffraction efficiency, bandwidth, and near-field distribution of the MMDG are theoretically investigated. For the single dielectric match layer grating, the bandwidth is 140 nm, if the thickness and refractive index of the match layer are changed, the maximum electric field in the grating ridge, match layer, and metal layer of the grating increases with the decrease in grating diffraction efficiency. For the multi-dielectric match layer grating, the bandwidth and the maximum electric field in the metal layer decrease with the increase in high- and low-index material pairs, and the maximum electric field in the grating ridge and match layer initially decreases and then increases. Over a wide wavelength range, the maximum electric field in the grating ridge, match layer, and metal layer is minimal near the central wavelength. Moreover, MMDG should be used at larger incident angles while keeping enough bandwidth to reduce the electric field in the grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Pessot, J. Squier, G. Mourou, D.J. Harter, Chirped-pulse amplification of 100-Fsec pulses. Opt. Lett. 14, 797–799 (1989)

    Article  ADS  Google Scholar 

  2. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)

    Article  ADS  Google Scholar 

  3. A.S. Svakhin, V.A. Sychugov, A.E. Tikhomirov, Diffraction gratings with high optical strength for laser resonators. Quantum Electron. 24, 233 (1994)

    Article  ADS  Google Scholar 

  4. W.J. Kong, M.J. Yun, C.C. Ling, X. Sun, J.D. Shao, Z.X. Fan, High diffraction efficiency for multi-layer dielectric gratings with rectangle groove-art. no. 69843T. P Soc Photo-Opt Ins. 6984, T9843–T9843 (2008)

    Google Scholar 

  5. L.F. Li, J. Hirsh, All-dielectric high-efficiency reflection gratings made with multilayer thin-film coatings. Opt. Lett. 20, 1349–1351 (1995)

    Article  ADS  Google Scholar 

  6. A.J. Waddie, M.J. Thomson, M.R. Taghizadeh, Comparison of one- and two-dimensional dielectric reflector geometries for high-energy laser pulse compression. Opt. Lett. 30, 991–993 (2005)

    Article  ADS  Google Scholar 

  7. S.J. Liu, Z.C. Shen, W.J. Kong, J. Shen, Z.X. Deng, Y.N. Zhao, J.D. Shao, Z.X. Fan, Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor. Opt. Commun. 267, 50–57 (2006)

    Article  ADS  Google Scholar 

  8. S.J. Liu, J. Shen, Z.C. Shen, W.J. Kong, C.Y. Wei, Y.X. Jin, H.D. Shao, Z.X. Fan, Near-field optical property of multi-layer dielectric gratings for pulse compressor. Acta Phys Sin-Ch Ed 55, 4588–4594 (2006)

    Google Scholar 

  9. S. Palmier, J. Neauport, N. Baclet, E. Lavastre, G. Dupuy, High reflection mirrors for pulse compression gratings. Opt. Express 17, 20430–20439 (2009)

    Article  ADS  Google Scholar 

  10. M. Flury, A.V. Tishchenko, O. Parriaux, The leaky mode resonance condition ensures 100 % diffraction efficiency of mirror-based resonant gratings. J. Lightwave Technol. 25, 1870–1878 (2007)

    Article  ADS  Google Scholar 

  11. H. Guan, Y. Jin, S. Liu, J. Wang, F. Kong, Y. Du, J. Shao, Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating. Opt. Commun. 287, 25–30 (2013)

    Article  ADS  Google Scholar 

  12. A. Hu, C. H. Zhou, H. C. Cao, J. Wu, J. J. Yu, and W. Jia, “Modal analysis of high-efficiency wideband reflective gratings,” J Optics-Uk 14, 055705 (2012)

    Google Scholar 

  13. J. Neauport, E. Lavastre, G. Raze, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, F. Desserouer, Effect of electric field on laser induced damage threshold of multilayer dielectric gratings. Opt. Express 15, 12508–12522 (2007)

    Article  ADS  Google Scholar 

  14. J. Neauport, N. Bonod, S. Hocquet, S. Palmier, G. Dupuy, Mixed metal dielectric gratings for pulse compression. Opt. Express 18, 23776–23783 (2010)

    Article  ADS  Google Scholar 

  15. F. Canova, O. Uteza, J.P. Chambaret, M. Flury, S. Tonchev, R. Fechner, O. Parriaux, High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression. Opt. Express 15, 15324–15334 (2007)

    Article  ADS  Google Scholar 

  16. J.P. Wang, Y.X. Jin, J.Y. Ma, T.Y. Sun, X.F. Jing, Design and analysis of broadband high-efficiency pulse compression gratings. Appl Optics 49, 2969–2978 (2010)

    Article  ADS  Google Scholar 

  17. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning. (Addison-Wesley Pub. Co., Reading, Mass, 1989), pp 192–208

  18. L.F. Li, Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity. J. Opt. Soc. Am. A. 10, 2581–2591 (1993)

    Article  ADS  Google Scholar 

  19. Y.X. Jin, H.Y. Guan, F.Y. Kong, J.P. Wang, A. Erdmann, S.J. Liu, Y. Du, J.D. Shao, H.B. He, K. Yi, Influence of two typical defects on the near-field optical properties of multilayer dielectric compression gratings. Appl Optics 51, 6683–6690 (2012)

    Article  Google Scholar 

  20. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995)

    Article  ADS  Google Scholar 

  21. E. D. Palik, Handbook of optical constants of solids, Academic Press handbook series. (Academic Press, Orlando, 1985), pp 350–357

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 11104295 and 10704029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxia Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, H., Jin, Y., Liu, S. et al. Near-field optical properties of wide bandwidth metal multi-layer dielectric gratings for pulse compressor. Appl. Phys. B 114, 557–565 (2014). https://doi.org/10.1007/s00340-013-5560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5560-9

Keywords

Navigation