Skip to main content
Log in

Evanescent-field excitation and collection approach for waveguide based photonic luminescent biosensors

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A silicon oxynitride channel waveguide based evanescent-field optical transducer is presented for lab-on-chip application. The optical biosensor detects luminescent bioanalytes infiltrated within a reactor well realized across the waveguide. As a main novelty, the sensing mechanism proposed makes use of the evanescent-field propagating in the waveguide to both excite and to collect the fluorescent signal. To understand the chip behavior, its design and collection efficiency were analyzed by finite-difference time-domain simulations in comparison with similar structures differing in the bioreactor thickness and therefore in the excitation and collection mechanisms. It is demonstrated that the best efficiency and performance are reached for the proposed dual evanescent field approach. Characterization of the optical losses and fluorescence measurements from a dye solution infiltrated in the bioreactor well validate the proposed working concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Seitz, Optical biochips, in Biophotonics, ed. by L. Pavesi, P. Fauchet (Springer, Berlin, 2008)

    Google Scholar 

  2. D. Janasek, J. Franzke, A. Manz, Nature 442, 374-380 (2006)

    Google Scholar 

  3. Y. Kostov, G. Rao, Rev. Sci. Instrum. 71, 4361-4374 (2000)

    Google Scholar 

  4. M.F. Templin, D. Stoll, J.M. Schwenk, O. Pötz, S. Kramer, T.O. Joos, Proteomics 3, 2155-2166 (2003)

  5. S.-Y. Seong, C.-Y. Choi, Proteomics 3, 2176-2189 (2003)

  6. V. Passaro, F. Dell’Olio, B. Casamassima, F. De Leonardis, Sensors 7, 508-536 (2007)

  7. P.N. Patel, V. Mishra, A.S. Mandloi, J. Eng. Res. Stud. 1, 15-34 (2012)

    Google Scholar 

  8. R. Kunz, K. Cottier, Anal. Bioanal. Chem. 384, 180-190 (2006)

    Google Scholar 

  9. Y. Lianghong, L. Ming, W. Leszek, S. Weiwei, T. Jun, L. Yicheng, J. Wei, J. Opt. 14, 085501 (2012)

    Google Scholar 

  10. R.M. De Ridder, K. Warhoff, A. Driessen, P.V. Lambeck, H. Albers, IEEE J. Sel. Top. Quantum Electron., 4, 930-937 (1998)

    Google Scholar 

  11. V.L. Paul, Meas. Sci. Technol. 17, R93 (2006)

  12. P.S. Nunes, N.A. Mortensen, J.P. Kutter, K.B. Mogensen, Opt. Lett. 33, 1623-1625 (2008)

    Google Scholar 

  13. D. Klunder, J. Elders, G.-J. Burger, M. Amersfoort, E. Krioukov, C. Otto, H. Hoekstra, A. Driessen, in Proceedings SPIE 5269, Chemical and Biological Point Sensors for Homeland Defense, (2004) doi:10.1117/12.515862

  14. K.B. Mogensen, P. Friis, J. Hübner, N. Petersen, A.M. Jørgensen, P. Telleman, J.P. Kutter, Opt. Lett. 26, 716-718 (2001)

    Google Scholar 

  15. B. Han, E. Rigo, R. Guider, S. Larcheri, G. Nunzi Conti, M.R. Vanacharla, A. Chiasera, M. Ferrari, L. Pavesi, G. Pucker, G. C. Righini, M. Ghulinyan, in Proceedings SPIE 8069, Integrated Photonics: Materials, Devices, and Applications, 80690 K, (2011) doi:10.1117/12.886820

  16. A. Cleary, A. Glidle, P.J.R. Laybourn, S. Garcia-Blanco, S. Pellegrini, C. Helfter, G.S. Buller, J.S. Aitchison, J.M. Cooper, Appl. Phys. Lett. 91, 071123 (2007)

    Google Scholar 

  17. F. Baldini, A. Carloni, A. Giannetti, G. Porro, C. Trono, Anal. Bioanal. Chem. 391, 1837-1844 (2008)

    Google Scholar 

  18. C. Burke, O. Stránik, H. McEvoy, B. MacCraith, Planar optical sensors and evanescent wave effects, in Optical Chemical Sensors, ed. by F. Baldini, A.N. Chester, J. Homola, S. Martellucci (Springer, Netherlands, 2006)

    Google Scholar 

  19. L.U. Polerecky, J. Hamrle, B.D. MacCraith, Appl. Opt. 39, 3968-3977 (2000)

    Google Scholar 

  20. M. Ghulinyan, R. Guider, G. Pucker, L. Pavesi, IEEE Photon. Technol. Lett. 23, 1166-1168 (2011)

    Google Scholar 

  21. F. Cattaruzza, A. Cricenti, A. Flamini, M. Girasole, G. Longo, A. Mezzi, T. Prosperi, J. Mater. Chem. 14, 1461-1468 (2004)

    Google Scholar 

  22. O. Parriaux, G.J. Veldhuis, J. Lightwave Technol. 16, 573 (1998)

    Google Scholar 

  23. “Lumerical Solutions,” (Inc. Vancouver U.S., 2010)

  24. J.S. Kee, D.P. Poenar, P. Neuzil, L. Yobas, Sens. Actuators B: Chem. 134, 532-538 (2008)

    Google Scholar 

  25. K.B. Mogensen, J.P. Kutter, Electrophoresis 30, S92-S100 (2009)

  26. I. Paribok, G. Zhavnerko, V. Agabekov, Y. Zmachinskaya, A. Yantsevich, S. Usanov, Russ. J. Gen. Chem. 77, 363-366 (2007)

    Google Scholar 

Download references

Acknowledgments

This work was supported by PAT in the framework of the FU-PAT NAOMI project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pavesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigo, E., Aparicio, F.J., Vanacharla, M.R. et al. Evanescent-field excitation and collection approach for waveguide based photonic luminescent biosensors. Appl. Phys. B 114, 537–544 (2014). https://doi.org/10.1007/s00340-013-5557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5557-4

Keywords

Navigation