Skip to main content
Log in

Single-site- and single-atom-resolved measurement of correlation functions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Correlation functions play an important role for the theoretical and experimental characterization of many-body systems. In solid-state systems, they are usually determined through scattering experiments, whereas in cold gases systems, time-of-flight, and in situ absorption imaging are the standard observation techniques. However, none of these methods allow the in situ detection of spatially resolved correlation functions at the single-particle level. Here, we give a more detailed account of recent advances in the detection of correlation functions using in situ fluorescence imaging of ultracold bosonic atoms in an optical lattice. This method yields single-site- and single-atom-resolved images of the lattice gas in a single experimental run, thus gaining direct access to fluctuations in the many-body system. As a consequence, the detection of correlation functions between an arbitrary set of lattice sites is possible. This enables not only the detection of two-site correlation functions but also the evaluation of non-local correlations, which originate from an extended region of the system and are used for the characterization of quantum phases that do not possess (quasi-)long-range order in the traditional sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Bloch, J. Dalibard, S. Nascimbène, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012)

    Article  Google Scholar 

  2. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  3. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, J.I. Cirac, G.V. Shlyapnikov, T. Hänsch, I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)

    Article  ADS  Google Scholar 

  4. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  ADS  Google Scholar 

  5. R. Jördens, N. Strohmaier, K. Günter, H. Moritz, T. Esslinger, A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008)

    Article  ADS  Google Scholar 

  6. U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T.A. Costi, R.W. Helmes, D. Rasch, A. Rosch, Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008)

    Article  ADS  Google Scholar 

  7. M. Randeria, W. Zwerger, M. Zwierlein (eds.), The BCS-BEC Crossover and the Unitary Fermi Gas, vol 836. Lecture Notes in Physics (Springer, 2012)

  8. Y.-I. Shin, C.H. Schunck, A. Schirotzek, W. Ketterle, Phase diagram of a two-component Fermi gas with resonant interactions. Nature 451, 689–693 (2008)

    Article  ADS  Google Scholar 

  9. N. Gemelke, X. Zhang, C.-L. Hung, C. Chin, In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009)

    Article  ADS  Google Scholar 

  10. S. Nascimbène, N. Navon, K.J. Jiang, F. Chevy, C. Salomon, Exploring the thermodynamics of a universal Fermi gas. Nature 463, 1057–1060 (2010)

    Article  ADS  Google Scholar 

  11. J.T. Stewart, J.P. Gaebler, D.S. Jin, Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008)

    Article  ADS  Google Scholar 

  12. P.T. Ernst, S. Götze, J.S. Krauser, K. Pyka, D.-S. Lühmann, D. Pfannkuche, K. Sengstock, Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy. Nat. Phys. 6, 56–61 (2009)

    Article  Google Scholar 

  13. W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009)

    Article  ADS  Google Scholar 

  14. W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010)

    Article  ADS  Google Scholar 

  15. J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)

    Article  ADS  Google Scholar 

  16. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

    Article  ADS  Google Scholar 

  17. D. Jaksch, C. Bruder, J.I. Cirac, C. Gardiner, P. Zoller, Cold Bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

    Article  ADS  Google Scholar 

  18. S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, 2011). ISBN 0521514681

  19. M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauss, C. Gross, E. Demler, S. Kuhr, I. Bloch, The ’Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012)

    Article  ADS  Google Scholar 

  20. L. Pollet, N. Prokof’ev, Higgs mode in a two-dimensional superfluid. Phys. Rev. Lett. 109, 010401 (2012)

    Article  ADS  Google Scholar 

  21. J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011)

    Article  ADS  Google Scholar 

  22. W.S. Bakr, P.M. Preiss, M.E. Tai, R. Ma, J. Simon, M. Greiner, Orbital excitation blockade and algorithmic cooling in quantum gases. Nature 480, 500–503 (2011)

    Article  ADS  Google Scholar 

  23. C. Weitenberg, M. Endres, J.F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, S. Kuhr, Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011)

    Article  ADS  Google Scholar 

  24. T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauss, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, S. Kuhr, Quantum dynamics of a mobile spin impurity. Nat. Phys. 9, 235–241 (2013)

    Google Scholar 

  25. M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauss, C. Gross, L. Mazza, M.C. Banuls, L. Pollet, I. Bloch, S. Kuhr, Observation of correlated particle-hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011)

    Article  ADS  Google Scholar 

  26. M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauss, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr, Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012)

    Article  ADS  Google Scholar 

  27. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. Atom. Mol. Opt. Phys. 42, 95 (2006)

    Article  ADS  Google Scholar 

  28. Z. Hadzibabic, P. Krüger, M. Cheneau, S.P. Rath, J. Dalibard, The trapped two-dimensional Bose gas: from Bose–Einstein condensation to Berezinskii–Kosterlitz–Thouless physics. New J. Phys. 10, 045006 (2008)

    Article  ADS  Google Scholar 

  29. C. Weitenberg, Single-Atom Resolved Imaging and Manipulation in an Atomic Mott Insulator. PhD thesis, Ludwig-Maximilians-Universität München, 2011

  30. J. Weiner, V. Bagnato, S. Zilio, P. Julienne, Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71, 1–85 (1999)

    Article  ADS  Google Scholar 

  31. B. Capogrosso-Sansone, S. Söyler, N. Prokof’ev, B. Svistunov, Monte Carlo study of the two-dimensional Bose–Hubbard model. Phys. Rev. A 77, 015602 (2008)

    Article  ADS  Google Scholar 

  32. F. Anfuso, A. Rosch, Fragility of string orders. Phys. Rev. B 76, 085124 (2007)

    Article  ADS  Google Scholar 

  33. den M. Nijs, K. Rommelse, Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40, 4709 (1989)

    Article  ADS  Google Scholar 

  34. H. Kruis, I. McCulloch, Z. Nussinov, J. Zaanen, Geometry and the hidden order of Luttinger liquids: the universality of squeezed space. Phys. Rev. B 70, 075109 (2004)

    Article  ADS  Google Scholar 

  35. D. Pérez-García, M. Wolf, M. Sanz, F. Verstraete, J.I. Cirac, String order and symmetries in quantum spin lattices. Phys. Rev. Lett. 100, 167202 (2008)

    Article  ADS  Google Scholar 

  36. J.B. Kogut, An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  37. Dalla E.G. Torre, E. Berg, E. Altman, Hidden order in 1d bose insulators. Phys. Rev. Lett. 97, 260401 (2006)

    Article  Google Scholar 

  38. E. Berg, Dalla E. Torre, T. Giamarchi, E. Altman, Rise and fall of hidden string order of lattice bosons. Phys. Rev. B 77, 245119 (2008)

    Article  ADS  Google Scholar 

  39. E. Kim, G. Fáth, J. Sólyom, D. Scalapino, Phase transitions between topologically distinct gapped phases in isotropic spin ladders. Phys. Rev. B 62, 14965–14974 (2000)

    Article  ADS  Google Scholar 

  40. F. Anfuso, A. Rosch, String order and adiabatic continuity of Haldane chains and band insulators. Phys. Rev. B 75, 144420 (2007)

    Article  ADS  Google Scholar 

  41. F. Verstraete, M. Martín-Delgado, J. Cirac, Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92, 087201 (2004)

    Article  ADS  Google Scholar 

  42. F. Verstraete, M. Popp, J. Cirac, Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004)

    Article  ADS  Google Scholar 

  43. M. Popp, F. Verstraete, M. Martín-Delgado, J. Cirac, Localizable entanglement. Phys. Rev. A 71, 042306 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  44. L. Venuti, M. Roncaglia, Analytic relations between localizable entanglement and string correlations in spin systems. Phys. Rev. Lett. 94, 207207 (2005)

    Article  ADS  Google Scholar 

  45. J. García-Ripoll, M. Martin-Delgado, J. Cirac, Implementation of spin hamiltonians in optical lattices. Phys. Rev. Lett. 93, 250405 (2004)

    Article  ADS  Google Scholar 

  46. E. Kapit, E. Mueller, Even-odd correlation functions on an optical lattice. Phys. Rev. A 82, 013644 (2010)

    Article  ADS  Google Scholar 

  47. F. Gerbier, Boson Mott insulators at finite temperatures. Phys. Rev. Lett. 99, 120405 (2007)

    Article  ADS  Google Scholar 

  48. V. Kashurnikov, B. Svistunov, Exact diagonalization plus renormalization-group theory: accurate method for a one-dimensional superfluid-insulator-transition study. Phys. Rev. B 53, 11776–11778 (1996)

    Article  ADS  Google Scholar 

  49. T.D. Kühner, S.R. White, H. Monien, One-dimensional Bose–Hubbard model with nearest-neighbor interaction. Phys. Rev. B 61, 12474–12489 (2000)

    Article  ADS  Google Scholar 

  50. M. Zwolak, G. Vidal, Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. Phys. Rev. Lett. 93, 207205 (2004)

    Article  ADS  Google Scholar 

  51. M. Endres, Probing correlated quantum many-body systems at the single-particle level. PhD thesis, Ludwig-Maximilians-Universität München (2013)

  52. S.P. Rath, W. Simeth, M. Endres, W. Zwerger, Non-local order in Mott insulators, Duality and Wilson Loops. Ann. Phys. 334, 256–271 (2013)

    Google Scholar 

  53. T. Kühner, H. Monien, Phases of the one-dimensional Bose–Hubbard model. Phys. Rev. B 58, R14741–R14744 (1998)

    Article  ADS  Google Scholar 

  54. R. Kubo, Generalized cumulant expansion method. J. Phys. Soc. Jpn. 17, 1100–1120 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature 490, 87–91 (2012)

    Article  ADS  Google Scholar 

  56. J. Honer, H. Weimer, T. Pfau, H. Büchler, Collective many-body interaction in Rydberg dressed atoms. Phys. Rev. Lett. 105, 160404 (2010)

    Article  ADS  Google Scholar 

  57. G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, P. Zoller, Strongly correlated gases of Rydberg-dressed atoms: quantum and classical dynamics. Phys. Rev. Lett. 104, 223002 (2010)

    Article  ADS  Google Scholar 

  58. L. Amico, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. A. Daley, H. Pichler, J. Schachenmayer, P. Zoller, Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109, 020505 (2012)

    Article  ADS  Google Scholar 

  60. H. Pichler, L. Bonnes, A.J. Daley, A.M. Läuchli, P. Zoller, Thermal vs. entanglement entropy: a measurement protocol for fermionic atoms with a quantum gas microscope. New J. Phys. 15, 063003 (2013)

    Google Scholar 

Download references

Acknowledgments

We thank Jacob Sherson for his contribution to the experimental setup. We acknowledge helpful discussions with Ehud Altman, Emanuele Dalla Torre, Matteo Rizzi, Ignacio Cirac, Andrew Daley, Peter Zoller, Steffen Patrick Rath, Wolfgang Simeth and Wilhelm Zwerger. This work was supported by MPG, DFG, EU (NAMEQUAM, AQUTE, Marie Curie Fellowship to M.C.), and JSPS (Postdoctoral Fellowship for Research Abroad to T.F.). LM acknowledges the economical support from Regione Toscana, POR FSE 2007–2013. DMRG simulations were performed using code released within the PwP project (http://www.qti.sns.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Endres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endres, M., Cheneau, M., Fukuhara, T. et al. Single-site- and single-atom-resolved measurement of correlation functions. Appl. Phys. B 113, 27–39 (2013). https://doi.org/10.1007/s00340-013-5552-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5552-9

Keywords

Navigation