Abstract
Correlation functions play an important role for the theoretical and experimental characterization of many-body systems. In solid-state systems, they are usually determined through scattering experiments, whereas in cold gases systems, time-of-flight, and in situ absorption imaging are the standard observation techniques. However, none of these methods allow the in situ detection of spatially resolved correlation functions at the single-particle level. Here, we give a more detailed account of recent advances in the detection of correlation functions using in situ fluorescence imaging of ultracold bosonic atoms in an optical lattice. This method yields single-site- and single-atom-resolved images of the lattice gas in a single experimental run, thus gaining direct access to fluctuations in the many-body system. As a consequence, the detection of correlation functions between an arbitrary set of lattice sites is possible. This enables not only the detection of two-site correlation functions but also the evaluation of non-local correlations, which originate from an extended region of the system and are used for the characterization of quantum phases that do not possess (quasi-)long-range order in the traditional sense.
Similar content being viewed by others
References
I. Bloch, J. Dalibard, S. Nascimbène, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012)
M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)
B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, J.I. Cirac, G.V. Shlyapnikov, T. Hänsch, I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)
I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)
R. Jördens, N. Strohmaier, K. Günter, H. Moritz, T. Esslinger, A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008)
U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T.A. Costi, R.W. Helmes, D. Rasch, A. Rosch, Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008)
M. Randeria, W. Zwerger, M. Zwierlein (eds.), The BCS-BEC Crossover and the Unitary Fermi Gas, vol 836. Lecture Notes in Physics (Springer, 2012)
Y.-I. Shin, C.H. Schunck, A. Schirotzek, W. Ketterle, Phase diagram of a two-component Fermi gas with resonant interactions. Nature 451, 689–693 (2008)
N. Gemelke, X. Zhang, C.-L. Hung, C. Chin, In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009)
S. Nascimbène, N. Navon, K.J. Jiang, F. Chevy, C. Salomon, Exploring the thermodynamics of a universal Fermi gas. Nature 463, 1057–1060 (2010)
J.T. Stewart, J.P. Gaebler, D.S. Jin, Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008)
P.T. Ernst, S. Götze, J.S. Krauser, K. Pyka, D.-S. Lühmann, D. Pfannkuche, K. Sengstock, Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy. Nat. Phys. 6, 56–61 (2009)
W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009)
W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010)
J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)
M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)
D. Jaksch, C. Bruder, J.I. Cirac, C. Gardiner, P. Zoller, Cold Bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)
S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, 2011). ISBN 0521514681
M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauss, C. Gross, E. Demler, S. Kuhr, I. Bloch, The ’Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012)
L. Pollet, N. Prokof’ev, Higgs mode in a two-dimensional superfluid. Phys. Rev. Lett. 109, 010401 (2012)
J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011)
W.S. Bakr, P.M. Preiss, M.E. Tai, R. Ma, J. Simon, M. Greiner, Orbital excitation blockade and algorithmic cooling in quantum gases. Nature 480, 500–503 (2011)
C. Weitenberg, M. Endres, J.F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, S. Kuhr, Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011)
T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauss, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, S. Kuhr, Quantum dynamics of a mobile spin impurity. Nat. Phys. 9, 235–241 (2013)
M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauss, C. Gross, L. Mazza, M.C. Banuls, L. Pollet, I. Bloch, S. Kuhr, Observation of correlated particle-hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011)
M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauss, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr, Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012)
R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. Atom. Mol. Opt. Phys. 42, 95 (2006)
Z. Hadzibabic, P. Krüger, M. Cheneau, S.P. Rath, J. Dalibard, The trapped two-dimensional Bose gas: from Bose–Einstein condensation to Berezinskii–Kosterlitz–Thouless physics. New J. Phys. 10, 045006 (2008)
C. Weitenberg, Single-Atom Resolved Imaging and Manipulation in an Atomic Mott Insulator. PhD thesis, Ludwig-Maximilians-Universität München, 2011
J. Weiner, V. Bagnato, S. Zilio, P. Julienne, Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71, 1–85 (1999)
B. Capogrosso-Sansone, S. Söyler, N. Prokof’ev, B. Svistunov, Monte Carlo study of the two-dimensional Bose–Hubbard model. Phys. Rev. A 77, 015602 (2008)
F. Anfuso, A. Rosch, Fragility of string orders. Phys. Rev. B 76, 085124 (2007)
den M. Nijs, K. Rommelse, Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40, 4709 (1989)
H. Kruis, I. McCulloch, Z. Nussinov, J. Zaanen, Geometry and the hidden order of Luttinger liquids: the universality of squeezed space. Phys. Rev. B 70, 075109 (2004)
D. Pérez-García, M. Wolf, M. Sanz, F. Verstraete, J.I. Cirac, String order and symmetries in quantum spin lattices. Phys. Rev. Lett. 100, 167202 (2008)
J.B. Kogut, An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979)
Dalla E.G. Torre, E. Berg, E. Altman, Hidden order in 1d bose insulators. Phys. Rev. Lett. 97, 260401 (2006)
E. Berg, Dalla E. Torre, T. Giamarchi, E. Altman, Rise and fall of hidden string order of lattice bosons. Phys. Rev. B 77, 245119 (2008)
E. Kim, G. Fáth, J. Sólyom, D. Scalapino, Phase transitions between topologically distinct gapped phases in isotropic spin ladders. Phys. Rev. B 62, 14965–14974 (2000)
F. Anfuso, A. Rosch, String order and adiabatic continuity of Haldane chains and band insulators. Phys. Rev. B 75, 144420 (2007)
F. Verstraete, M. Martín-Delgado, J. Cirac, Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92, 087201 (2004)
F. Verstraete, M. Popp, J. Cirac, Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004)
M. Popp, F. Verstraete, M. Martín-Delgado, J. Cirac, Localizable entanglement. Phys. Rev. A 71, 042306 (2005)
L. Venuti, M. Roncaglia, Analytic relations between localizable entanglement and string correlations in spin systems. Phys. Rev. Lett. 94, 207207 (2005)
J. García-Ripoll, M. Martin-Delgado, J. Cirac, Implementation of spin hamiltonians in optical lattices. Phys. Rev. Lett. 93, 250405 (2004)
E. Kapit, E. Mueller, Even-odd correlation functions on an optical lattice. Phys. Rev. A 82, 013644 (2010)
F. Gerbier, Boson Mott insulators at finite temperatures. Phys. Rev. Lett. 99, 120405 (2007)
V. Kashurnikov, B. Svistunov, Exact diagonalization plus renormalization-group theory: accurate method for a one-dimensional superfluid-insulator-transition study. Phys. Rev. B 53, 11776–11778 (1996)
T.D. Kühner, S.R. White, H. Monien, One-dimensional Bose–Hubbard model with nearest-neighbor interaction. Phys. Rev. B 61, 12474–12489 (2000)
M. Zwolak, G. Vidal, Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. Phys. Rev. Lett. 93, 207205 (2004)
M. Endres, Probing correlated quantum many-body systems at the single-particle level. PhD thesis, Ludwig-Maximilians-Universität München (2013)
S.P. Rath, W. Simeth, M. Endres, W. Zwerger, Non-local order in Mott insulators, Duality and Wilson Loops. Ann. Phys. 334, 256–271 (2013)
T. Kühner, H. Monien, Phases of the one-dimensional Bose–Hubbard model. Phys. Rev. B 58, R14741–R14744 (1998)
R. Kubo, Generalized cumulant expansion method. J. Phys. Soc. Jpn. 17, 1100–1120 (1962)
P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature 490, 87–91 (2012)
J. Honer, H. Weimer, T. Pfau, H. Büchler, Collective many-body interaction in Rydberg dressed atoms. Phys. Rev. Lett. 105, 160404 (2010)
G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, P. Zoller, Strongly correlated gases of Rydberg-dressed atoms: quantum and classical dynamics. Phys. Rev. Lett. 104, 223002 (2010)
L. Amico, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)
A. Daley, H. Pichler, J. Schachenmayer, P. Zoller, Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109, 020505 (2012)
H. Pichler, L. Bonnes, A.J. Daley, A.M. Läuchli, P. Zoller, Thermal vs. entanglement entropy: a measurement protocol for fermionic atoms with a quantum gas microscope. New J. Phys. 15, 063003 (2013)
Acknowledgments
We thank Jacob Sherson for his contribution to the experimental setup. We acknowledge helpful discussions with Ehud Altman, Emanuele Dalla Torre, Matteo Rizzi, Ignacio Cirac, Andrew Daley, Peter Zoller, Steffen Patrick Rath, Wolfgang Simeth and Wilhelm Zwerger. This work was supported by MPG, DFG, EU (NAMEQUAM, AQUTE, Marie Curie Fellowship to M.C.), and JSPS (Postdoctoral Fellowship for Research Abroad to T.F.). LM acknowledges the economical support from Regione Toscana, POR FSE 2007–2013. DMRG simulations were performed using code released within the PwP project (http://www.qti.sns.it).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Endres, M., Cheneau, M., Fukuhara, T. et al. Single-site- and single-atom-resolved measurement of correlation functions. Appl. Phys. B 113, 27–39 (2013). https://doi.org/10.1007/s00340-013-5552-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-013-5552-9