Applied Physics B

, Volume 112, Issue 4, pp 461–465 | Cite as

CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell

  • Karol Krzempek
  • Mohammad Jahjah
  • Rafał Lewicki
  • Przemysław Stefański
  • Stephen So
  • David Thomazy
  • Frank K. Tittel
Rapid Communication

Abstract

The development of a continuous wave, thermoelectrically cooled (TEC), distributed feedback diode laser-based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy as the detection technique. TDLAS was performed using an ultra-compact 57.6 m effective optical path length innovative spherical multipass cell capable of 459 passes between two mirrors separated by 12.5 cm and optimized for the 2.5–4 μm range TEC mercury–cadmium–telluride detector. For an interference-free C2H6 absorption line located at 2,976.8 cm−1, a 1σ minimum detection limit of 740 pptv with a 1 s lock-in amplifier time constant was achieved.

References

  1. 1.
    S.G. So, D. Chang, O. Al’Rifai, G. Wysocki, A.A. Kosterev, F.K. Tittel, CLEO/QELS (2008)Google Scholar
  2. 2.
    C.J. Smith, S. So, G. Wysocki, CLEO/QELS (2010)Google Scholar
  3. 3.
    B. Hirst, G. Gibson, S. Gillepsie, I. Archibald, O. Podlaha, K.D. Skeldon, S. Monk, M. Padget, Atmos. Environ. 41, 1128 (2007)CrossRefADSGoogle Scholar
  4. 4.
    G. Etiope, P. Ciccioli, Science 323(5913), 478 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    C. Wang, P. Sahay, Sensors 9, 8230–8262 (2009). doi:10.3390/s91008230 CrossRefGoogle Scholar
  6. 6.
    S. Kanoh, H. Kobayashi, K. Motoyoshi, Chest 128(4), 92–2387 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Xiao, J.A. Logan, D.J. Jacob, R.C. Hudman, R. Yantosca, J. Geophys. Res. 113, D21306 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    I.J. Simpson, M.P. Andersen, S. Meinardi, L. Bruhwiler, N.J. Blake, D. Helmig, F.S. Rowland, D.R. Blake, Nature 488, 490–494 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J.A. Silver, Appl. Optics 31(6) (1992)Google Scholar
  10. 10.
    K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, F.K. Tittel, Appl. Phys. B 106, 251–255 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 10, 2492–2510 (2010)CrossRefGoogle Scholar
  12. 12.
    S. So, D. Thomazy, CLEO 2012: Science and innovations, CW3B (2012)Google Scholar
  13. 13.
    G.S. Engel, E.J. Moyer, Opt. Lett. 32(6), 704–706 (2007) Google Scholar
  14. 14.
  15. 15.
    S. Schilt, F.K. Tittel, K.P. Petrov, Encycl. Analyt. Chem. (2011). doi:10.1002/9780470027318.a0707.pub2
  16. 16.
    P. Werle, Appl. Phys. B 102, 313–329 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karol Krzempek
    • 2
  • Mohammad Jahjah
    • 1
  • Rafał Lewicki
    • 1
  • Przemysław Stefański
    • 1
    • 2
  • Stephen So
    • 3
  • David Thomazy
    • 3
  • Frank K. Tittel
    • 1
  1. 1.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  2. 2.Laser and Fiber Electronics GroupWroclaw University of TechnologyWrocławPoland
  3. 3.Sentinel PhotonicsMonmouth JunctionUSA

Personalised recommendations