Applied Physics B

, Volume 114, Issue 1–2, pp 81–88 | Cite as

A complicated Duffing oscillator in the surface-electrode ion trap

  • Hao-Yu Wu
  • Yi Xie
  • Wei Wan
  • Liang ChenEmail author
  • Fei Zhou
  • Mang FengEmail author


The oscillation coupling and different nonlinear effects are observed in a single trapped 40Ca+ ion confined in our home-built surface-electrode trap (SET). The coupling and the nonlinearity are originated from the high-order multipole potentials, such as hexapole and octopole potentials, due to different layouts and the fabrication asymmetry of the SET. We solve a complicated Duffing equation with coupled oscillation terms by the multiple-scale method, which fits the experimental values very well. Our investigation in the SET helps for exploring multi-dimensional nonlinearity using currently available techniques and for suppressing instability of qubits in quantum information processing with trapped ions.


Laser Heating Duffing Oscillator Couple Motion Secular Frequency Middle Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by National Fundamental Research Program of China under Grant No. 2012CB922102, and by National Natural Science Foundation of China under Grants No. 11274352 and No. 11104325.


  1. 1.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley-Interscience, New York, 1979)zbMATHGoogle Scholar
  2. 2.
    M.I. Dykman, M.A. Krivoglaz, Soviet Scientific Reviews Volume (Harwood Academic, New York, 1984) pp. 265Google Scholar
  3. 3.
    L.D. Landau, E.M. Lifshitz, Mechanics, 3rd edn. (Pergamon, New York, 1976)Google Scholar
  4. 4.
    A.H. Nayfeh, Introduction to Perturbation Techniques. (Wiley, New York, 1981)zbMATHGoogle Scholar
  5. 5.
    V.I. Arnold, Geometrical Methods in the Theroy of Ordinaty Differential Equations, Volume 250 of Grundlehren der mathematischen Wissenschaften, 2nd edn. (Springer, New York, 1988)CrossRefGoogle Scholar
  6. 6.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Perseus Books, New York City, 1994)Google Scholar
  7. 7.
    H.B. Chan, M.I. Dykman, C. Stambaugh, Phys. Rev. Lett. 100, 130602 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    M.I. Dykman, B. Golding, D. Ryvkine, Phys. Rev. Lett. 92, 080602 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    B. Yurke, E. Buks, J. Lightwave Tech. 24, 5054 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    E. Buks, B. Yurke, Phys. Rev. A 73, 23815 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    N. Akerman, S. Kotler, Y. Glickman, Y. Dallal, A. Keselman, R. Ozeri, Phys. Rev. A 82, 061402(R) (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Makarov, Anal. Chem. 68, 4257 (1996)CrossRefGoogle Scholar
  15. 15.
    A. Drakoudis, M. Söllner, G. Werth, Int. J. Mass. Spectrom. 252, 61 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T.W. Hünsch, Th. Udem, Nat. Phys. 5, 682 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Knünz, M. Herrmann, V. Batteiger, G. Saathoff, T.W. Hünsch, K. Vahala, Th. Udem, Phys. Rev. Lett. 105, 013004 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    D. Kielpinksi, C. Monroe, D.J. Wineland, Nature (London) 417, 709 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    J.H. Wesenberg, Phys. Rev. A 78, 063410 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    M.G. House, Phys. Rev. A 78, 033402 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    R. Bradford Blakestad, Transport of Trapped-Ion Qubits Within a Scalable Quantum Processor [D] (California Institute of Technology, Pasadena, 2002)Google Scholar
  22. 22.
    L. Chen, W. Wan, Y. Xie, H.-Y. Wu, F. Zhou, M. Feng, Chin. Phys. Lett. 30, 013702 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    D.T.C. Allcock, J.A. Sherman, D.N. Stacey, A.H. Burrell, M.J. Curtis, G. Imreh, N.M. Linke, D.J. Szwer, S.C. Webster, A.M. Steane, D.M. Lucas, New J. Phys. 12, 053026 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    G. Littich, Electrostatic Control and Transport of Ions on a Planar Trap for Quantum Information Processing (ETH Zürich and University of California, Berkeley, 2011)Google Scholar
  25. 25.
    A. Doroudi, Phys. Rev. E 80, 056603 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    S. Sevugarajan, A.G. Menon, Int. J. Mass Spectrom. 209, 209 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    M. Vedel, J. Rocher, M. Knoop, F. Vedel, Appl. Phys. B 66, 191 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    A.H. Nayfeh, Problems in Perturbation (Wiley-Interscience, New York, 1985)zbMATHGoogle Scholar
  29. 29.
    A.H. Nayfeh, J. Sound Vib. 92, 363 (1984)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations