Skip to main content
Log in

High-stable, double-pass forward superfluorescent fiber source based on erbium-doped photonic crystal fiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A double-pass forward configuration superfluorescent fiber source (SFS) based on erbium-doped photonic crystal fiber (EDPCF) with a high intrinsic mean wavelength stability is presented. The main factors of SFS instability with temperature variation are analyzed. Optimization of the high-stable SFS is achieved by combining high-performance EDPCF, optimal fiber length, and source structure with fine-tuning pump power. The temperature dependence of the SFS mean wavelength has been reduced to below 0.077 ppm/°C with temperature variation from 70 to −40 °C. To the best of our knowledge, this value is the closest to 0 ppm/°C in the reported references, and these new developments probably constitute an important step for high-accuracy interferometric fiber-optic gyroscope sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.F. Wysocki, M.J.F. Digonnet, B.Y. Kim, H.J. Shaw, Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications. J. Lightw. Technol. 12, 550–567 (1994)

    Article  ADS  Google Scholar 

  2. D.C. Hall, W.K. Burns, R.P. Moeller, High-stability Er3+ doped superfluorescent fiber sources. J. Lightw. Technol. 13, 1452–1460 (1995)

    Article  ADS  Google Scholar 

  3. D.G. Falquier, M.J.F. Digonnet, H.J. Shaw, A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability. IEEE Photon. Technol. Lett. 13, 25–27 (2001)

    Article  ADS  Google Scholar 

  4. H.J. Patrick, A.D. Kersey, W.K. Burns, R.P. Moeller, Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilization. Electron. Lett. 33, 2061–2063 (1997)

    Article  Google Scholar 

  5. P. Ou, B. Cao, C.X. Zhang, Y. Li, Y.H. Yang, Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating. Electron. Lett. 44, 187–189 (2008)

    Article  Google Scholar 

  6. A. Wang, P. Ou, L.S. Feng, C.X. Zhang, X.M. Cui, H.D. Liu, Z.Z. Gan, High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber. IEEE Photon. Technol. Lett. 12, 1843–1845 (2009)

    Article  ADS  Google Scholar 

  7. A.M. Wang, High stability Er-doped superfluorescent fiber source improved by incorporating bandpass fiber. IEEE Photon. Technol. Lett. 23, 227–229 (2011)

    Article  ADS  Google Scholar 

  8. C.R. Giles, E. Desurvir, Modeling erbium-doped fiber amplifiers. J. Lightw. Technol. 9, 271–283 (1991)

    Article  ADS  Google Scholar 

  9. E.K. Akowuah, H. Ademgil, S. Haxha, F.A. Malek, An endlessly single-mode photonic crystal fiber with low chromatic dispersion, and bend and rotational insensitivity. J. Lightw. Technol. 27, 3940–3946 (2009)

    Article  ADS  Google Scholar 

  10. T. Matsui, J. Zhou, K. Nakajima, Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss. J. Lightw. Technol. 23, 4178–4183 (2005)

    Article  ADS  Google Scholar 

  11. M. Koshiba, K. Saitoh, Structural dependence of effective area and mode field diameter for holey fibers. Opt. Exp. 11, 1746–1756 (2003)

    Article  ADS  Google Scholar 

  12. C.L. Zhao, X. Yang, C. Lu, W. Jin, M.S. Demonkan, Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photon. Technol. Lett. 16, 2535–2537 (2004)

    Article  ADS  Google Scholar 

  13. H. Dobb, K. Kalli, D.J. Webb, Temperature-insensitive long period grating sensors in photonic crystal fibre. Electron. Lett. 40, 657–658 (2004)

    Article  Google Scholar 

  14. S. Blin, H.K. Kim, M.J.F. Digonnet, G.S. Kino, Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber. J. Lightw. Technol. 25, 861–865 (2007)

    Article  ADS  Google Scholar 

  15. J. Villatoro, V. Finazzi, V.P. Minkovich, V. Pruneri, G. Badenes, Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing. Appl. Phys. Lett. 91, 0911091–0911093 (2007)

    Article  Google Scholar 

  16. M.Y. Chen, Y.K. Zhang, Bend insensitive design of large-mode-area microstructured optical fibers. J. Lightw. Technol. 29, 2216–2222 (2011)

    Article  ADS  Google Scholar 

  17. T. Murao, K. Nagao, K. Saitih, M. Koshiba, Design principle for realizing low bending losses in all-solid photonic bandgap fibers. J. Lightw. Technol. 29, 2428–2435 (2011)

    Article  ADS  Google Scholar 

  18. K. Furusawa, T. Kogure, T.M. Monro, D.J. Richardson, High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber. Opt. Exp. 12, 3452–3458 (2004)

    Article  ADS  Google Scholar 

  19. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, Extended single-mode photonic crystal fiber lasers. Opt. Exp. 14, 2715–2720 (2006)

    Article  ADS  Google Scholar 

  20. X. Wu, S.C. Ruan, C.X. Liu, L. Zhang, High stability Erbium-doped photonic crystal fiber source. Appl. Opt. 51, 2277–2281 (2012)

    Article  ADS  Google Scholar 

  21. C.X. Liu, L. Zhang, X. Wu, S.C. Ruan, High-stability superfluorescent fiber source based on an Er3+-doped photonic crystal fiber. Chin. Phys. Lett. 29, 064202 (2012)

    Article  ADS  Google Scholar 

  22. C.X. Liu, L. Zhang, X. Wu, H.L. Yang, S.C. Ruan, Coupling technique of photonic crystal fiber. J. Chin. Inert. Technol. 17, 366–369 (2009)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Wu Han FiberHome Telecommunication Technologies Co. Ltd. for providing the fiber used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Zhang, L., Liu, Cx. et al. High-stable, double-pass forward superfluorescent fiber source based on erbium-doped photonic crystal fiber. Appl. Phys. B 114, 433–438 (2014). https://doi.org/10.1007/s00340-013-5537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5537-8

Keywords

Navigation