Skip to main content
Log in

Plasmonic coupling from silver nanoparticle dimer array mediating surface plasmon resonant enhancement on the thin silver film

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the optical absorption spectrum of a periodic array of silver nanoparticle dimer on a thin silver film using multiple-scattering formalism. Surface plasmon polariton mediated from silver nanoparticle dimer array is excited and enhanced by about four times compared with that from monomer array. This enhancement results from the coupling between the two nanoparticles’ plasmons of symmetry mode and anti-symmetry mode. We also illustrate the distance-dependent nanoparticle plasmonic coupling modes based on the polarized charge distribution in dimer geometry. The proposed silver nanoparticle dimer array can be used to enhance surface spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Hao, G.C. Schatz, J. Chem. Phys. 120, 357 (2004)

    Article  ADS  Google Scholar 

  2. H. Tamaru, H. Kuwata, H.T. Miyazaki, K. Miyano, Appl. Phys. Lett. 80, 1826 (2002)

    Article  ADS  Google Scholar 

  3. A.L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, N.F. van Hulst, J. Microsc. (Oxford) 229, 254 (2008)

    Article  Google Scholar 

  4. T. Atay, J.H. Song, A.V. Nurmikko, Nano Lett. 4, 1627 (2004)

    Article  ADS  Google Scholar 

  5. A. Ghoshal, P.G. Kik, J. Appl. Phys. 103, 113111 (2008)

    Article  ADS  Google Scholar 

  6. N. Papanikolaou, Phys. Rev. B 75, 235426 (2007)

    Article  ADS  Google Scholar 

  7. R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Science 267, 1629 (1995)

    Article  ADS  Google Scholar 

  8. Y. Chang, W. Li, Y. Jiang, Phys. Lett. A 376, 2314 (2012)

    Article  ADS  Google Scholar 

  9. W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, F.R. Aussenegg, Opt. Commun. 220, 137 (2003)

    Article  ADS  Google Scholar 

  10. Q.H. Wei, K.H. Su, S. Durant, X. Zhang, Nano Lett. 4, 1067 (2004)

    Article  ADS  Google Scholar 

  11. Z. Zhang, A. Weber-Bargioni, S.W. Wu, S. Dhuey, S. Cabrini, P.J. Schuck, Nano Lett. 9, 4505 (2009)

    Article  ADS  Google Scholar 

  12. P.K. Jain, M.A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010)

    Article  ADS  Google Scholar 

  13. Y.-W. Jun, S. Sheikholeslami, D.R. Hostetter, C. Tajon, C.S. Craik, A.P. Alivisatos, Proc. Natl. Acad. Sci. U. S. A. 106, 17735 (2009)

    Article  ADS  Google Scholar 

  14. B.M. Reinhard, S. Sheikholeslami, A. Mastroianni, A.P. Alivisatos, J. Liphardt, Proc. Natl. Acad. Sci. U. S. A. 104, 2667 (2007)

    Article  ADS  Google Scholar 

  15. H. Wang, D.W. Brandl, P. Nordlander, N.J. Halas, Acc. Chem. Res. 40, 53 (2007)

    Article  Google Scholar 

  16. S. Sheikholeslami, Y.W. Jun, P.K. Jain, A.P. Alivisatos, Nano Lett. 10, 2655 (2010)

    Article  ADS  Google Scholar 

  17. D.C. Marinica, A.K. Kazansky, P. Nordlander, J. Aizpurua, A.G. Borisov, Nano Lett. 12, 1333 (2012)

    Article  ADS  Google Scholar 

  18. N.J. Halas, S. Lal, S. Link, W.-S. Chang, D. Natelson, J.H. Hafner, P. Nordlander, Adv. Mater. 24, 4842 (2012)

    Article  Google Scholar 

  19. C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Nano Lett. 5, 1569 (2005)

    Article  ADS  Google Scholar 

  20. A. Bek, R. Jansen, M. Ringler, S. Mayilo, T.A. Klar, J. Feldmann, Nano Lett. 8, 485 (2008)

    Article  ADS  Google Scholar 

  21. B. Yan, A. Thubagere, W.R. Premasiri, L.D. Ziegler, L. Dal Negro, B.M. Reinhard, ACS Nano 3, 1190 (2009)

    Article  Google Scholar 

  22. N. Stefanou, V. Yannopapas, A. Modinos, Comput. Phys. Commun. 113, 49 (1998)

    Article  ADS  MATH  Google Scholar 

  23. A.D. Rakic, A.B. Djurišic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)

    Article  ADS  Google Scholar 

  24. H. Nabika, M. Takase, F. Nagasawa, K. Murakoshi, J. Phys. Chem. Lett. 1, 2470 (2010)

    Article  Google Scholar 

  25. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Nano Lett. 4, 899 (2004)

    Article  ADS  Google Scholar 

  26. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  27. G.F. Walsh, C. Forestiere, L. Dal Negro, Opt. Express 19, 21081 (2011)

    Article  ADS  Google Scholar 

  28. P.K. Jain, W. Huang, M.A. El-Sayed, Nano Lett. 7, 2080 (2007)

    Article  ADS  Google Scholar 

  29. A. Benedetti, M. Centini, C. Sibilia, M. Bertolotti, J. Opt. Soc. Am. B 27, 408 (2010)

    Article  ADS  Google Scholar 

  30. K. Zhao, M.C. Troparevsky, D. Xiao, A.G. Eguiluz, Z. Zhang, Phys. Rev. Lett. 102, 186804 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 50836002 and 51176041) and the National Key Basic Research Program of China (No. 2013CB328702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyuan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Jiang, Y. & Sun , X. Plasmonic coupling from silver nanoparticle dimer array mediating surface plasmon resonant enhancement on the thin silver film. Appl. Phys. B 113, 503–509 (2013). https://doi.org/10.1007/s00340-013-5499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5499-x

Keywords

Navigation