Skip to main content
Log in

Designs of photonic crystal nanocavities for stimulated Raman scattering in diamond

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Diamond is a good candidate for producing Raman laser due to its high first-order Raman gain coefficient. Since its Raman shift (~1,332.5 cm−1) is large compared to other solid-state materials, it is possible to produce a Raman frequency converter using diamond crystals. Photonic crystals can be employed for confining photons within periodic structures, the scale of which is on the order of the incident wavelength, making it convenient for integrating all-optical circuits. Combining the merits of both diamond and photonic crystals, we present two designs of photonic crystal nanocavities (in hexagonal and square lattice structures) which can produce stimulated Raman lasing with low-threshold power. After optimizing the photonic bandgaps, triple resonant modes with high Q and small modal volume are realized in each design by tuning the radii of dot defects in the nanocavities. Numerical simulations show that for such designs, the threshold power for generating Raman lasers in the range of a few hundred nano-Watts can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.D. Yang, C.W. Wong, Opt. Express 13, 4723 (2005)

    Article  ADS  Google Scholar 

  2. Q. Liu, Z. Ouyang, S. Albin, Opt. Express 19, 4795 (2011)

    Article  Google Scholar 

  3. S.Y. Lee, D.H. Zhang, D.W. McCamant, P. Kukura, R.A. Mathies, J. Chem. Phys. 121, 3632 (2004)

    Article  ADS  Google Scholar 

  4. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, Opt. Express 11, 1731 (2003)

    Article  ADS  Google Scholar 

  5. B. Jalali, R. Claps, D. Dimitropoulos, V. Raghunathan, Top. Appl. Phys. 94, 199 (2004)

    Article  Google Scholar 

  6. J.H. Hu, Z.H. Chen, C.Y. Yu, J. Lightwave Technol. 30, 1237 (2012)

    Article  ADS  Google Scholar 

  7. R.P. Mildren, J.E. Butler, J.R. Rabeau, Opt. Express 16, 18950 (2008)

    Article  ADS  Google Scholar 

  8. R.P. Mildren, A. Sabella, Opt. Lett. 34, 2811 (2009)

    Article  ADS  Google Scholar 

  9. D.J. Spence, E. Granados, R.P. Mildren, Opt. Lett. 35, 556 (2010)

    Article  ADS  Google Scholar 

  10. C.H. Xu, C.Z. Wang, C.T. Chan, K.M. Ho, Phys. Rev. B 43, 5024 (1991)

    Article  ADS  Google Scholar 

  11. L.H. Wei, P.K. Kuo, R.L. Thomas, T.R. Anthony, W.F. Banholzer, Phys. Rev. Lett. 70, 3764 (1993)

    Article  ADS  Google Scholar 

  12. A.S. Barnard, S.P. Russo, I.K. Snook, Phys. Rev. B 68, 235404 (2003)

    Article  ADS  Google Scholar 

  13. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  14. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  15. J.F. McMillan, X. Yang, N.C. Panoiu, R.M. Osgood, C.W. Wong, Opt. Lett. 31, 1235 (2006)

    Article  ADS  Google Scholar 

  16. W. Lubeigt, G.M. Bonner, J.E. Hastie, M.D. Dawson, D. Burns, A.J. Kemp, Opt. Lett. 35, 2994 (2010)

    Article  Google Scholar 

  17. A.A. Kaminskii, V.G. Ralchenko, V.I. Konov, H.J. Eichler, Phys. Stat. Sol. 242, R4–R6 (2005)

    Article  ADS  Google Scholar 

  18. C. E. B. A. H. Stein’s PhD thesis, Stimulated Raman Scattering in Silicon Coupled Photonic Crystal Microcavity Arrays (Universität Karlsruhe, May 2006). http://www.stanford.edu/group/nqp/jv_files/thesis/Benedikt-Thesis-RamanLaserPC-Design.pdf

  19. S. Spillane, T. Kippenberg, K. Vahala, Nature 415, 621 (2002)

    Google Scholar 

  20. Z. Ouyang, X. Luo, J.C. Wang, C.P. Liu, C.J. Wu, Proc. SPIE 6840, 684008-8 (2007)

    Google Scholar 

  21. B. Hausmann, I. Bulu, T. Babinec, M. Khan, P. R. Hemmer, M. Loncar, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMFF3. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2010-CMFF3

  22. T. Babinec, B. Hausmann, M. Khan, Y. Zhang, J. Maze, P.R. Hemmer, M. Lončar, Nature Nanotech. 5, 195 (2010)

    Article  ADS  Google Scholar 

  23. M. Hiscocks, K. Ganesan, B. Gibson, S. Huntington, F. Ladouceur, S. Prawer, Opt. Express 16, 19512 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Norfolk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sacharia Albin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Ouyang, Z. & Albin, S. Designs of photonic crystal nanocavities for stimulated Raman scattering in diamond. Appl. Phys. B 113, 457–462 (2013). https://doi.org/10.1007/s00340-013-5492-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5492-4

Keywords

Navigation